PSTricks

pst-bezier

A PSTricks package for drawing Bezier curves; v.0.01

Contents

Contents

1 Introduction

N

Installation and usage of pst-bezier.tex

3 The \psbcurve macro

4 Things that do not work (‘known bugs’)

5 List of all optional arguments for pst-bezier

References

The pstricks package provides (essentially) two main macros for drawing curves:
\pscurve and \psbezier. Both macros employ Bezier splines.

The \pscurve macro takes multiple interpolated points as arguments. Thus, it is
easy to draw long multiply bent curves. The problem with \pscurve is that there is
no easy way to change the automatically computed control points without simulta-
neously changing the interpolated points. Note that some control is possible via the
curvature option.

The \psbezier macro gives full control over the interpolation points and the control
points of one Bezier polynominal of degree three (two interpolated points and two
control points).

Thanks to:
Jean-Come Charpentier.

1 Introduction 4

1 Introduction

If one demands for the access to certain control points of one multiply bent curve
one has to use multiple instances of the \psbezier macro. With this approache each
inner interpolation point of the curve has to be input twice. Furthermore, if one needs
smooth joints one has to compute control points symmetrically to the corresponding
interpolation points for every joint even if one does not care so much about the exact
tangential direction at some of those joints. That can be rather tedious.

The \psbcurve macro of the package pst-bezier is intented to demonstrate a way
to combine the nice properties of the macros \pscurve and \psbezier. It provides an
easy input format to describe ‘arbitrarily’ many interpolation points of a curve and to
fix the control points at some freely selected interpolation points.

Note, that pst-bezier is no final package (e.g. the automatical computation of the
control points is not as refined as that one for the macro \pscurve).

2 Installation and usage of pst-bezier.tex

Installation: As prerequisites for pst-bezier you need resent working versions of
IATEX and pstricks. The files pst-bezier.tex and pst-bezier.sty must be some-
where in your TgX-input path. Further more, the file pst-bezier.pro must be in some
path, where dvips can find it.

Usage: As usual, load the packages pstricks and pst-bezier in that order via the
\usepackage macro.

Now you are ready to use the \psbcurve macro within your document body. This
macro is described in the next section with all its options.

Whith the following simple IATgX-source code you can test whether you have cor-
rectly installed the package:

\documentclass{minimal}

\usepackage{pstricks}

\usepackage{pst-bezier}

4\begin{document}

\begin{pspicture}(6,4)
\psbcurve(1,2)(5,2) % Draw just one

straight line.
\end{pspicture}
\end{document}

3 The \psbcurve macro

In the most simple form you can specify any number of interpolation points as the
argument of \psbcurve.

3 The \psbcurve macro 5

3
2 \begin{pspicture}[showgrid=true](5,3)
\psbcurve(1,1)(2,2)(3,1)(4,2)
1 \end{pspicture}
0
0 1 2 3 4 5
As usual, options can be specified within brackets.
3
2 . - \begin{pspicture}[showgrid=true](5,3)
/ | \psbcurve[showpoints=true](1,1)(2,2)
/ 4 (3,1)(4,2)
1 L, ‘e \end{pspicture}
0
0 1 2 3 4 5

As you can see in the above example, the showpoints feature works (partially) with
\psbcurve.

The next figure shows again the curve from the first example. This time labels are
added to the points (this is just for the following description, it is not a feature of
\psbcurve).

\begin{pspicture}[showgrid=true](5,3)
\psbcurve[showpoints=true](1,1)(2,2)

, (3,1) (4,2)
\uput[-901(1,1) {$\vec{p}_{0}=\vec{l
> = 7 — — }-{1}$}
) AR D | \uput[90](1.5,2) {\vec{r}_{1}}

\uput[90](2,2) {\vec{p}_{1}}
\uput[90](2.5,2) {\vec{l}_{2}}

H
N
o

‘e \uput[-90](2.5,1) {\vec{r}_{2}}
o = 71 ?2]_9’273 \uput[-90](3,1) {\vec{p}_{2}}
0 \uput[-90](3.5,1) {$\vec{1}_{3}3$}
0 1 2 3 4 5 10 \uput[90](4,2) {$\vec{r}_{3}=\vec{p
}-{3}$}
11 \end{pspicture}

The points l_gbeled lvith Pr (k= 0,...,3) are the interpolation points, these ones
labelled with [1,..., [3, and these ones labelled with 71,..., 73 are the left and right

control points, respectively.

Between each consecutive pair p_1, pj of integpolation points the \psbcurve macro
draws a cubic Bezier spline. The control points [; and 7’ determine the tangential
direction of the bezier spline at the interpolation _Points. More exactly, the bezier
spline from p;_; to P is tangent to the vector [, — pi_; at the point p;_; and
tantengial to the vektor 7} — P at the point 7.

3 The \psbcurve macro 6

Without any optional modifier arguments (described later in this text) the control
points are computed automatically from the interpolation points by the formulas!

I1="To
Ui =tu(Pr — Pr—2) fork=2,...,n
T =tp(Br1— Prt1) fork=1,...,n-1
7!n = ﬁn
where t;, (k = 1,...,n) are real coefficients which are called tension and which default

to the value bcurveTension=0.25.

You can change the appearance of the curve by several modifiers. First of all you
can directly set the left and right control points via the modifiers 1(x,y) and r(x,y),
resp., as shown in the next two examples. The unmodified curve is drawn in the
background in blue color.

\pspicture[showgrid=true](5,3)
\psset{showpoints=true}
\psbcurve[linecolor=blue, linewidth
2 =0.01](1,1)%
TN 4 (2,2)(3,1)(4,2)
\ | \psbcurve(1,1)1(2,1)(2,2)(3,1)r(4,1)
& Ze (4,2)
T3 \uput[-90](2,1) {$\vec{l} {1}$}
0 \uput[-90](4,1) {\vec{r}_{3}}
0 1 2 3 4 5 \endpspicture

3

\pspicture[showgrid=true](5,3)
\psset{showpoints=true}
2 \psbcurve[linecolor=blue, linewidth
/ | =0.01](1,1)%
i /1 4 (2,2)(3,1)(4,2)
1 o> “ \psbcurve(1,1)(2,2)1(2,1) (3,1) (4,2)
T \uput[-901(2,1) {$\vec{1} {2}$}
0 \endpspicture

0 1 2 3 4 5
On the right hand side the last example is shown once more without grid and with
showpoints=false . There, you see that there is a corner at the second interpolation
point.

\pspicture(5,3)
\psbcurve(1,1)(2,2)1(2,1)(3,1)(4,2)
\endpspicture

If you change some left control point Tk with Lhe help of the L(x,y) modifier then
the control point 7;_; is set symmetrically to [, with respect to the interpolation
point p;_1. In that way you get a smooth joint as demonstrated in the next example.

1 Note that this method is very crude. To compute the curve such that the curvature is continuous
would require solving a nonlinear system of equations. That is not implemented yet.

3 The \psbcurve macro

4

\pspicture[showgrid=true](5,3)
\psbcurve[linecolor=blue, linewidth
=0.01](1,1)%

(2,2)(3,1)(4,2)
\psset{showpoints=true}
\psbcurve(1,1)(2,2)L(2,1)(3,1)(4,2)
\uput[-90](2,1) {$\vec{1}_{2}$}
\uput[0](2,2){\vec{p}_{1}}
\uput[0](2,3) {$\vec{r}_{1}3$}
\endpspicture

With the t{t} modifier you can change the tension of the automatically computed

control points of the current Bezier spline.

\pspicture[showgrid=true](5,3)
\psset{showpoints=true}
\psbcurve[linecolor=blue, linewidth
=0.01](1,1)%
(2,2)(3,1)(4,2)
\psbcurve(1,1)(2,2)t{0.5}(3,1) (4,2)
\endpspicture

2
As you can see from the example both control points of the current spline are af-

fected by the t{t} modifier. If you want to change the tension of just the left or right
control point you can use the t1{t} or tr{t} modifier, respectively, as demonstrated

3 4

in the following two examples.

3

\pspicture[showgrid=true](5,3)
\psset{showpoints=true}
\psbcurve[linecolor=blue, linewidth
=0.01](1,1)%
(2,2)(3,1)(4,2)
\psbcurve(1,1)%
(2,2)t1{0.5}(3,1) (4,2)
\endpspicture

0

\pspicture[showgrid=true](5,3)
\psset{showpoints=true}
\psbcurve[linecolor=blue, linewidth
=0.01](1,1)%
(2,2)(3,1)(4,2)
\psbcurve(1,1)(2,2)tr{0.5}(3,1) (4,2)
\endpspicture

0 1 2 3 4 5

The ts{t} modifier changes the tension of the left and right control points next to
the interpolation point which stands in front of the modifier. In the next example a
negative tension value leads to a rather surprising effect.

\pspicture[showgrid=true](5,3)
\psset{showpoints=true}
\psbcurve[linecolor=blue, linewidth
=0.01](1,1)%
(2,2)(3,1)(4,2)
\psbcurve(1,1)(2,2)ts{-0.5}(3,1) (4,2)
\endpspicture

3
2
.-\-o— - — 0
\/ -
/
4
1 X / 1
= -®
0
0 1 2 3 4 5

4 Things that do not work (‘known bugs’) 8

The default value of the tension can be set with the option bcurveTension as in the
following example.

3 \pspicture[showgrid=true](5,3)
\psset{showpoints=true}

2 \psbcurve[linecolor=blue, linewidth
- N " ’ =0.01](1,1)%
1 , | 1 (2,2)(3,1)(4,2)

1 oL o < —é \psbcurve[bcurveTension=0.5](1,1)%

(2,2)(3,1)(4,2)
0 \endpspicture
0 1 2 3 4 5

You can set this option also with the help of the \psset macro. It is even possible
to change the value of bcurveTension in the middle of a \psbcurve. Just use the
modifier T{t} for that purpose as shown in the following example.

6
5
\pspicture[showgrid=true](5,6)
4 \psset{showpoints=true}
\psbcurve[linecolor=blue, linewidth
=0.01](1,1)%
3 4 (2,2)(3,1)(4,2)(4,4)(3,5)%
(2,4)(1,5)
5 \psbcurve(1,1)(2,2)(3,1)(4,2)%
T{0.5}(4,4)(3,5)(2,4)(1,5)
\endpspicture
1
0
0 1 2 3 4 5

Certainly, you can use the T{t} modifier several times in one curve. (Try it for
yourself.) The linestyle and fillstyle options (and several more) are respected by
\psbcurve as the following example shows.

3

\pspicture[showgrid=true](5,3)
\psbcurve[linestyle=dashed,

linewidth=3pt,
4 dash=0.5 0.2,
1 fillstyle=solid,
fillcolor=blue](1,1)(2,2)(3,1)(4,2)
\endpspicture

0
0 1 2 3 4 5

4 Things that do not work (‘known bugs’)

As already mentioned this project is something like an experiment. So, there are
many things that do not work.

* new lines inside the argument list are not ignored.

e The control points are computed in a rather crude way (see above). The curvature
option is not recognised.

References 9

o If fillstyle is set to solid and showpoints=true then the fill color covers the
interpolation and control points.

e arrow heads do not work.

5 List of all optional arguments for pst-bezier

Key Type Default
bcurveTension ordinary 0.25

References

[1] Michel Goosens, Frank Mittelbach, Serbastian Rahtz, Denis Roegel, and Herbert
Vols. The IATEX Graphics Companion. Addison-Wesley Publishing Company,
Reading, Mass., 2nd edition, 2007.

[2] Laura E. Jackson and Herbert Vols. Die Plot-Funktionen von pst-plot. Die
TgXnische Komodie, 2/02:27-34, June 2002.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen
Einsatz. IWT, Vaterstetten, 1989.

[4] Herbert VolS. Die mathematischen Funktionen von Postscript. Die TgXnische
Komodie, 1/02:40-47, March 2002.

[5] Herbert Voss. PSTricks Support for pdf.
, 2002.

[6] Herbert Vol5. PSTricks - Grafik fiir TgX und BTgX. DANTE/Lehmanns Media,
Heidelberg/Berlin, 5. edition, 2008.

[7] Herbert Vol5s. Mathematik mit IATEX. DANTE/Lehmanns Media,
Heidelberg/Berlin, 2009.

[8] Michael Wiedmann and Peter Karp. References for TgX and Friends.
, 2003.

[9] Timothy Van Zandt. PSTricks - PostScript macros for Generic TeX.
, 1993.

http://PSTricks.de/pdf/pdfoutput.phtml
http://PSTricks.de/pdf/pdfoutput.phtml
http://www.miwie.org/tex-refs/
http://www.miwie.org/tex-refs/
http://www.tug.org/application/PSTricks
http://www.tug.org/application/PSTricks

Index
bcurveTension, 6, 8
curvature, 3, 8
dvips, 4

false, 6

File
pst-bezier.pro, 4
pst-bezier.sty, 4
pst-bezier.tex, 4

fillstyle, 9

Keyword
bcurveTension, 6, 8
curvature, 3, 8
fillstyle, 9
showpoints, 5, 6, 9
solid, 9

L, 6

1,6

Macro
\psbcurve, 4, 5, 8
\psbezier, 3, 4
\pscurve, 3, 4
\psset, 8
\usepackage, 4

Package
pst-bezier, 4
pstricks, 3, 4

Program
dvips, 4

\psbcurve, 4, 5, 8

\psbezier, 3, 4

\pscurve, 3, 4

\psset, 8

pst-bezier, 4

pst-bezier.pro, 4

pst-bezier.sty, 4

pst-bezier.tex, 4

pstricks, 3, 4

r, 6

showpoints, 5, 6, 9
solid, 9

spline, 3

Syntax

\usepackage, 4

Value
false, 6
true, 9

10

	Introduction
	Installation and usage of pst-bezier.tex
	The \psbcurve macro
	Things that do not work (`known bugs')
	List of all optional arguments for pst-bezier
	References

