
algorithm2e.sty — package for algorithms

release 5.0

(c) 1995-1997 Christophe Fiorio, Tu-Berlin, Germany
(c) 1998-2013 Christophe Fiorio, LIRMM, Montpellier 2 University, France

Report bugs and comments to cfiorio@um2.fr
algorithm2esty-annonce@lirmm.fr mailing list for announcements

algorithm2esty-discussion@lirmm.fr mailing list for discussion∗†‡§¶‖∗∗††

january 06 2013

Contents

1 Introduction 3

2 How to use it: abstract 3

3 Two more detailed examples 4
3.1 Algorithm disjoint decomposition . 4
3.2 Algorithm: IntervalRestriction . 7

4 Genericity and example of languages 9

5 Compatibility issues 16

6 Environments defined in the package 17

7 The options of the package 18
7.1 language option . 18
7.2 compatibility issue . 18
7.3 environment display and use . 19

7.3.1 boxed, ruled, plain environment . 19
7.3.2 algorithm numbering . 19
7.3.3 figure and toc . 19

7.4 code typesetting . 19
7.4.1 blocks display . 19
7.4.2 end keywords . 20
7.4.3 comments . 20
7.4.4 lines numbers . 20
7.4.5 title of algorithms . 20

∗The author is very grateful to David Carlisle, one of the authors of the LaTeX Companion book, for his advices
†Martin Blais for his suggestions
‡David A. Bader for his new option noend
§Gilles Geeraerts for his new command SetKwIfElseIf
¶Ricardo Fukasawa for the portuguese keywords
‖Christian Icking for the german translation of keywords
∗∗Arnaud Giersch for his suggestions and corrections on SetKwComments
††and the many users as Jean-Baptiste Rouquier for their remarks

1

8 Typesetting 21

9 Commands provided with the package 21
9.1 global code typesetting commands . 21
9.2 algorithm environment, caption, list of algorithms, 22

9.2.1 caption, title and changind reference of algorithms 22
9.2.2 setting style and layout of algorithm, caption and title 22

9.3 line numbering . 23
9.3.1 labelling and numbering lines . 23
9.3.2 setting style of lines numbers . 24

9.4 math display . 24
9.5 standard styles . 24

9.5.1 standard font shapes and styles . 24
9.5.2 caption and title font style . 25
9.5.3 setting font standard font shapes and styles 27
9.5.4 setting caption and title font style . 27

9.6 controlling the layout of algorithms . 28
9.7 comments . 30

10 The predefined language keywords 30
10.1 Input, output macros... 30
10.2 basic keywords and blocks . 30
10.3 comments . 31
10.4 if-then-else macros . 31
10.5 multiple condition selection: . 32
10.6 loops with ”end condition” test at the beginning 32
10.7 loops with ”end condition” test at the end . 33
10.8 how default keywords are obtained . 33

11 To define your own language keywords 34
11.1 to define Input, output macros... 34
11.2 to define basic keywords or blocks . 34
11.3 to define keywords as function . 35
11.4 to define comments . 35
11.5 to define if-then-else macros . 35
11.6 to define multiple condition selection: . 38
11.7 to define loops with ”end condition” test at the beginning 39
11.8 to define loops with ”end condition” test at the end 39

12 Other language predefined keywords 40
12.1 french keywords . 40
12.2 German keywords . 41
12.3 Portuguese keywords . 43
12.4 Italian keywords . 44
12.5 Some Czech keywords . 46

13 Known bugs 46

2

1 Introduction

Algorithm2e is an environment for writing algorithms in LATEX2e. An algorithm is defined as a
floating object like figures. It provides macros that allow you to create different sorts of key words,
thus a set of predefined key words is given. You can also change the typography of the keywords.
See section 3 for two long examples of algorithms written with this package.

You can subscribe to algorithm2e-announce mailing list to receive announcements about
revisions of the package and to algorithm2e-discussion to discuss, send comments, ask questions
about the package. In order to subscribe to the mailing lists you have to send an email to
sympa@lirmm.fr with subscribe algorithm2e-announce Firstname Name or
subscribe algorithm2e-discussion Firstname Name in the body of the message.

Changes from one release to the next are indicated in release notes at the beginning of the
packages. For this release (5.0), changes are indicated at the end of this document.

2 How to use it: abstract

You must set \usepackage[options]{algorithm2e} before \begin{document} command. The
available options are described in section 7.

The optional arguments [Hhtbp] works like those of figure environment. The H argument
forces the algorithm to stay in place. If used, an algorithm is no more a floating object. Caution:
algorithms cannot be cut, so if there is not enough place to put an algorithm with H option at a
given spot, LATEX will place a blank and put the algorithm on the following page.

Here is a quick example1:

\begin{algorithm}[H]

\SetAlgoLined

\KwData{this text}

\KwResult{how to write algorithm with \LaTeX2e }

initialization\;

\While{not at end of this document}{

read current\;

\eIf{understand}{

go to next section\;

current section becomes this one\;

}{

go back to the beginning of current section\;

}

}

\caption{How to write algorithms}

\end{algorithm}

1For longer and more complexe examples see section 3

3

which gives

Data: this text
Result: how to write algorithm with LATEX2e
initialization;
while not at end of this document do

read current section;
if understand then

go to next section;
current section becomes this one;

else
go back to the beginning of current section;

end

end

Algorithm 1: How to write algorithms

Very Important : each line MUST end with \; only those with a macro beginning a block
should not end with \;. Note then that you can always use the \; command in math mode to set
a small space.

The caption works as in a figure environment, except that it should be located at the end of
the algorithm. It is used by \listofalgorithms as a reference name for the list of algorithms.
You can also use the title macro given with the package, but this macro doesn’t insert an entry
in the list of algorithms.

3 Two more detailed examples

The algorithm 2 and algorithm 3 are written with this package.

3.1 Algorithm disjoint decomposition

Here we suppose that we have done:

\usepackage[lined,boxed,commentsnumbered]{algorithm2e}

The algorithm 2 was written in LATEX2e code as presented next page. You can label lines, and for
example line 4 denotes the second For (see \label command in the example). Notice also some
ways of doing comments at lines 8, 14, 17 and 19. Star comment commands are for comment on
lines of code, else comment is a line by itself as at line 17. The different option in star comments
defines if it is left (l and h) or right justified (r and f). The first ones (l and r) add ; at the end
of line code, the second ones (f and h) doesn’t. These last are useful when used in side comment
(introduced by ()) of alternatives of loops keyword commands.

4

input : A bitmap Im of size w × l
output: A partition of the bitmap

1 special treatment of the first line;
2 for i← 2 to l do
3 special treatment of the first element of line i;
4 for j ← 2 to w do
5 left ← FindCompress(Im[i, j − 1]);
6 up ← FindCompress(Im[i− 1,]);
7 this ← FindCompress(Im[i, j]);
8 if left compatible with this then // O(left,this)==1
9 if left < this then Union(left,this);

10 ;
11 else Union(this,left);
12 ;

13 end
14 if up compatible with this then // O(up,this)==1
15 if up < this then Union(up,this);
16 ;
17 // this is put under up to keep tree as flat as possible

18 else Union(this,up);
19 ; // this linked to up

20 end

21 end
22 foreach element e of the line i do FindCompress(p);

23 end

Algorithm 2: disjoint decomposition

5

\IncMargin{1em}

\begin{algorithm}

\SetKwData{Left}{left}\SetKwData{This}{this}\SetKwData{Up}{up}

\SetKwFunction{Union}{Union}\SetKwFunction{FindCompress}{FindCompress}

\SetKwInOut{Input}{input}\SetKwInOut{Output}{output}

\Input{A bitmap Im of size $w\times l$}

\Output{A partition of the bitmap}

\BlankLine

\emph{special treatment of the first line}\;

\For{$i\leftarrow 2$ \KwTo l}{

\emph{special treatment of the first element of line i}\;

\For{$j\leftarrow 2$ \KwTo w}{\label{forins}

\Left\leftarrow \FindCompress{$Im[i,j-1]$}\;

\Up\leftarrow \FindCompress{$Im[i-1,]$}\;

\This\leftarrow \FindCompress{$Im[i,j]$}\;

\If(\tcp*[h]{O(\Left,\This)==1}){\Left compatible with \This}{\label{lt}

\lIf{\Left $<$ \This}{\Union{\Left,\This}}\;

\lElse{\Union{\This,\Left}\;}

}

\If(\tcp*[f]{O(\Up,\This)==1}){\Up compatible with \This}{\label{ut}

\lIf{\Up $<$ \This}{\Union{\Up,\This}}\;

\tcp{\This is put under \Up to keep tree as flat as possible}\label{cmt}

\lElse{\Union{\This,\Up}}\tcp*[r]{\This linked to \Up}\label{lelse}

}

}

\lForEach{element e of the line i}{\FindCompress{p}}

}

\caption{disjoint decomposition}\label{algo_disjdecomp}

\end{algorithm}\DecMargin{1em}

6

3.2 Algorithm: IntervalRestriction

Here we suppose we that have done:

\usepackage[ruled,vlined]{algorithm2e}

The LATEX2e code on next page gives algorithm 3. Here lines are not autonumbered but you
can number them individually with \nl command as for line 1 or line 2. You even can set your
own reference with \nlset command and get back this reference by simply using classical \ref.
For example \ref{InResR} gives REM.

Algorithm 3: IntervalRestriction

Data: G = (X,U) such that Gtc is an order.
Result: G′ = (X,V) with V ⊆ U such that G′tc is an interval order.
begin

V ←− U
S ←− ∅
for x ∈ X do

NbSuccInS(x)←− 0
NbPredInMin(x)←− 0
NbPredNotInMin(x)←− |ImPred(x)|

for x ∈ X do
if NbPredInMin(x) = 0 and NbPredNotInMin(x) = 0 then

AppendToMin(x)

1 while S 6= ∅ do
REM remove x from the list of T of maximal index

2 while |S ∩ ImSucc(x)| 6= |S| do
for y ∈ S − ImSucc(x) do
{ remove from V all the arcs zy : }
for z ∈ ImPred(y) ∩Min do

remove the arc zy from V
NbSuccInS(z)←− NbSuccInS(z)− 1
move z in T to the list preceding its present list
{i.e. If z ∈ T [k], move z from T [k] to T [k − 1]}

NbPredInMin(y)←− 0
NbPredNotInMin(y)←− 0
S ←− S − {y}
AppendToMin(y)

RemoveFromMin(x)

7

\begin{algorithm}

\DontPrintSemicolon

\KwData{$G=(X,U)$ such that G^{tc} is an order.}

\KwResult{$G’=(X,V)$ with $V\subseteq U$ such that $G’^{tc}$ is an

interval order.}

\Begin{

$V \longleftarrow U$\;

$S \longleftarrow \emptyset$\;

\For{$x\in X$}{

$NbSuccInS(x) \longleftarrow 0$\;

$NbPredInMin(x) \longleftarrow 0$\;

$NbPredNotInMin(x) \longleftarrow |ImPred(x)|$\;

}

\For{$x \in X$}{

\If{$NbPredInMin(x) = 0$ {\bf and} $NbPredNotInMin(x) = 0$}{

$AppendToMin(x)$}

}

\nl\While{$S \neq \emptyset$}{\label{InRes1}

\nlset{REM} remove x from the list of T of maximal index\;\label{InResR}

\lnl{InRes2}\While{$|S \cap ImSucc(x)| \neq |S|$}{

\For{$ y \in S-ImSucc(x)$}{

\{ remove from V all the arcs zy : \}\;

\For{$z \in ImPred(y) \cap Min$}{

remove the arc zy from V\;

$NbSuccInS(z) \longleftarrow NbSuccInS(z) - 1$\;

move z in T to the list preceding its present list\;

\{i.e. If $z \in T[k]$, move z from $T[k]$ to

$T[k-1]$\}\;

}

$NbPredInMin(y) \longleftarrow 0$\;

$NbPredNotInMin(y) \longleftarrow 0$\;

$S \longleftarrow S - \{y\}$\;

$AppendToMin(y)$\;

}

}

$RemoveFromMin(x)$\;

}

}

\caption{IntervalRestriction\label{IR}}

\end{algorithm}

8

4 Genericity and example of languages

In this section, we will try to show you main macros and how you can use this package to suit
your need. Based on one example using most popular algorithms expressions, we will show you
how it can be configured to be display in pseudo-code, in python or in C.

The following code shows how is typeset the generic example we’ll use in this section:

\Fn(\tcc*[h]{algorithm as a recursive function}){\FRecurs{some args}}{

\KwData{Some input data\\these inputs can be displayed on several lines and one

input can be wider than line’s width.}

\KwResult{Same for output data}

\tcc{this is a comment to tell you that we will now really start code}

\If(\tcc*[h]{a simple if but with a comment on the same line}){this is true}{

we do that, else nothing\;

\tcc{we will include other if so you can see this is possible}

\eIf{we agree that}{

we do that\;

}{

else we will do a more complicated if using else if\;

\uIf{this first condition is true}{

we do that\;

}

\uElseIf{this other condition is true}{

this is done\tcc*[r]{else if}

}

\Else{

in other case, we do this\tcc*[r]{else}

}

}

}

\tcc{now loops}

\For{\forcond}{

a for loop\;

}

\While{$i<n$}{

a while loop including a repeat--until loop\;

\Repeat{this end condition}{

do this things\;

}

}

They are many other possibilities and customization possible that you have to

discover by reading the documentation.

}

To handle if condition, use a macro to be abble to change it according to language syntax,
in particular we will change it for python-style and c-style. We also define a function to write
algorithm as a recursive function. These macros are defined as:

\newcommand{\forcond}{$i=0$ \KwTo n}

\SetKwFunction{FRecurs}{FnRecursive}%

The algorithm 4 shows how algorithm is displayed in pseudo-code with default behaviour and
options boxed, commentsnumbered and longend set. Note that by default, lines are used to show
block of code. Note also that longend option makes package use special end keyword for each
command2.

2Default behaviour uses short end keywords, it means typeseting only end.

9

1 Function FnRecursive(some args) /* algorithm as a recursive function */
Data: Some input data
these inputs can be displayed on several lines and one input can be wider than line’s
width.
Result: Same for output data

2 /* this is a comment to tell you that we will now really start code */

3 if this is true then /* a simple if but with a comment on the same line */

4 we do that, else nothing;
5 /* we will include other if so you can see this is possible */

6 if we agree that then
7 we do that;
8 else
9 else we will do a more complicated if using else if;

10 if this first condition is true then
11 we do that;
12 else if this other condition is true then
13 this is done; /* else if */

14 else
15 in other case, we do this; /* else */

16 end if

17 end if

18 end if
19 /* now loops */

20 for i = 0 to n do
21 a for loop;
22 end for
23 while i < n do
24 a while loop including a repeat–until loop;
25 repeat
26 do this things;
27 until this end condition;

28 end while
29 They are many other possibilities and customization possible that you have to discover

by reading the documentation.
30 end

Algorithm 4: Generic example with most classical expressions derived in pseudo-code

10

The algorithm 5 shows how algorithm is displayed using automatic block display (new feature
since relase 5.0). To achieve this display, we only add following macros at start of the algorithm:
\AlgoDisplayBlockMarkers\SetAlgoBlockMarkers{begin}{end}%

\SetAlgoNoEnd
First one tells package to display blocks with keyword markers. Note that the definition of block
markers are the one by default. Last macro remove end keywords of commands to avoid a double
end (the one of block marker and the one of command).

The algorithm 6 shows how algorithm looks like with a python-style syntax. To achieve this
display, we need to make following changes before the algorithm:
\SetStartEndCondition{ }{}{}%

\SetKwProg{Fn}{def}{\string:}{}

\SetKwFunction{Range}{range}%%

\SetKw{KwTo}{in}\SetKwFor{For}{for}{\string:}{}%

\SetKwIF{If}{ElseIf}{Else}{if}{:}{elif}{else:}{}%

\SetKwFor{While}{while}{:}{fintq}%

\renewcommand{\forcond}{i \KwTo\Range{n}}

\AlgoDontDisplayBlockMarkers\SetAlgoNoEnd\SetAlgoNoLine%
SetStartEndCondition is used to display alternatives and loops conditions according to python
syntax: it means a space before condition, and no space after since ’:’ marks end of condition.
Functions are defined with def in python, so we redefine \Fn macro. Range is a new macro for
range python function. Next are redefined For, If and While commands accordingly to python
syntax. Note that we do nothing for repeat-until command since it doesn’t exist in python. For
condition is redefined to match python behaviour. At last we tell package to not display block, to
not display end keyword and to not print line according to python syntax.

The algorithm 7 shows how algorithm looks like with a c-style syntax. To achieve this display,
we need to make following changes before the algorithm:
\SetStartEndCondition{ (}{)}{)}\SetAlgoBlockMarkers{\{}{\}}%

\SetKwProg{Fn}{}{}{}\SetKwFunction{FRecurs}{void FnRecursive}%

\SetKwFor{For}{for}{}{}%

\SetKwIF{If}{ElseIf}{Else}{if}{}{elif}{else}{}%

\SetKwFor{While}{while}{}{}%

\SetKwRepeat{Repeat}{repeat}{until}%

\AlgoDisplayBlockMarkers\SetAlgoNoLine%
SetStartEndCondition set braces around conditions like in C. We want that each block is marked
with { at start and } at end, so we set it thanks to \SetAlgoBlockMarkers macro. \Fn is redefined
with no keyword since in C, name of function defines it. Then we redefin FnRecursive with its
type. Next, For, If, While and Repeat are redefined accordingly to C syntax. At last, we tell the
package to display block markers.

The algorithm 8 shows how algorithm looks like with a c-style syntax and a more compact way
to mark blocks. To achieve this display, we need to make following changes before the algorithm:
\SetStartEndCondition{ (}{)}{)}\SetAlgoBlockMarkers{}{\}}%

\SetKwProg{Fn}{}{\{}{}\SetKwFunction{FRecurs}{void FnRecursive}%

\SetKwFor{For}{for}{\{}{}%

\SetKwIF{If}{ElseIf}{Else}{if}{\{}{elif}{else\{}{}%

\SetKwFor{While}{while}{\{}{}%

\SetKwRepeat{Repeat}{repeat\{}{until}%

\AlgoDisplayBlockMarkers\SetAlgoNoLine%
If you look at algorithm 4, you can see that some command doesn’t put a end. For example, it is
a case for a if followed by an else, same thing for a else if. In C, there is always an end marker.
So, to achieve our goal we need to use end marker of blocks. But we don’t want displaying begin
marker as in algorithm 5 or algorithm 7. If begin block marker is set to empty, then nothing
is written (especially not a blank line). So we tell package to use block markers with an empty
marker for begin and a } for end. Now we have to tell package to write a { on the same line as
commands. This is achieve by redefining If, For, While and Repeat command.

11

1 Function FnRecursive(some args) /* algorithm as a recursive function */

2 begin
Data: Some input data
these inputs can be displayed on several lines and one input can be wider than line’s
width.
Result: Same for output data

3 /* this is a comment to tell you that we will now really start code */

4 if this is true then /* a simple if but with a comment on the same line */

5 begin
6 we do that, else nothing;
7 /* we will include other if so you can see this is possible */

8 if we agree that then
9 begin

10 we do that;
11 end
12 else
13 begin
14 else we will do a more complicated if using else if;
15 if this first condition is true then
16 begin
17 we do that;
18 end
19 else if this other condition is true then
20 begin
21 this is done; /* else if */

22 end
23 else
24 begin
25 in other case, we do this; /* else */

26 end

27 end

28 end
29 /* now loops */

30 for i = 0 to n do
31 begin
32 a for loop;
33 end
34 while i < n do
35 begin
36 a while loop including a repeat–until loop;
37 repeat
38 begin
39 do this things;
40 end
41 until this end condition;

42 end
43 They are many other possibilities and customization possible that you have to discover

by reading the documentation.
44 end

Algorithm 5: Generic example in pseudo-code with begin-end block set

12

1 def FnRecursive(some args): /* algorithm as a recursive function */
Data: Some input data
these inputs can be displayed on several lines and one input can be wider than line’s
width.
Result: Same for output data

2 /* this is a comment to tell you that we will now really start code */

3 if this is true: /* a simple if but with a comment on the same line */

4 we do that, else nothing;
5 /* we will include other if so you can see this is possible */

6 if we agree that:
7 we do that;
8 else:
9 else we will do a more complicated if using else if;

10 if this first condition is true:
11 we do that;
12 elif this other condition is true:
13 this is done; /* else if */

14 else:
15 in other case, we do this; /* else */

16 /* now loops */

17 for i in range(n):
18 a for loop;
19 while i < n:
20 a while loop including a repeat–until loop;
21 repeat
22 do this things;
23 until this end condition;

24 They are many other possibilities and customization possible that you have to discover
by reading the documentation.

Algorithm 6: Generic example in python-style like syntax

13

1 void FnRecursive(some args) /* algorithm as a recursive function */

2 {
Data: Some input data
these inputs can be displayed on several lines and one input can be wider than line’s
width.
Result: Same for output data

3 /* this is a comment to tell you that we will now really start code */

4 if (this is true) /* a simple if but with a comment on the same line */

5 {
6 we do that, else nothing;
7 /* we will include other if so you can see this is possible */

8 if (we agree that)
9 {

10 we do that;
11 }
12 else
13 {
14 else we will do a more complicated if using else if;
15 if (this first condition is true)
16 {
17 we do that;
18 }
19 elif (this other condition is true)
20 {
21 this is done; /* else if */

22 }
23 else
24 {
25 in other case, we do this; /* else */

26 }
27 }
28 }
29 /* now loops */

30 for (i to range(n))
31 {
32 a for loop;
33 }
34 while (i < n)
35 {
36 a while loop including a repeat–until loop;
37 repeat
38 {
39 do this things;
40 }
41 until (this end condition);

42 }
43 They are many other possibilities and customization possible that you have to discover

by reading the documentation.
44 }

Algorithm 7: Generic example in c-style like syntax

14

1 void FnRecursive(some args){ /* algorithm as a recursive function */
Data: Some input data
these inputs can be displayed on several lines and one input can be wider than line’s
width.
Result: Same for output data

2 /* this is a comment to tell you that we will now really start code */

3 if (this is true){ /* a simple if but with a comment on the same line */

4 we do that, else nothing;
5 /* we will include other if so you can see this is possible */

6 if (we agree that){
7 we do that;
8 }
9 else{

10 else we will do a more complicated if using else if;
11 if (this first condition is true){
12 we do that;
13 }
14 elif (this other condition is true){
15 this is done; /* else if */

16 }
17 else{
18 in other case, we do this; /* else */

19 }
20 }
21 }
22 /* now loops */

23 for (i to range(n)){
24 a for loop;
25 }
26 while (i < n){
27 a while loop including a repeat–until loop;
28 repeat{
29 do this things;
30 }
31 until (this end condition);

32 }
33 They are many other possibilities and customization possible that you have to discover

by reading the documentation.
34 }

Algorithm 8: Generic example in c-style like syntax with compact block

15

5 Compatibility issues

Compatibily with other packages improven by changing name of internal macros. Algorithm2e
can now be used with almost all package, as elsart, hermes, arabtex for example, if this last
is loaded after algorithm2e package. So, at this time, release 5.0has few known compatibility
problem with other packages. The packages or classes that are known to be not compatible with
algorithm2e package is:

• ascelike

• pstcol

Nevertheless, when use with some packages, some of their options cannot be used, or you need to
specify some particular options (as algo2e to change name of environment if algorithm is already
defined by the class), either from algorithm2e package or from the other packages.

hyperref if you want to compile in PdfLATEX, you must not use naturalnames option. Beware
this has changed from release 3 where you should use it!

article-hermes is not compatible with relsize used by algorithm2e package, so you have to use
norelsize option to get algorithm works with article-hermes class.

Note also that, if you use packages changing the way references are printed, you must define labels
of algorithm after the caption to ensure a correct printing. You cannot use \label inside a caption
without errors.

From release 4.0, some commands have been renamed to have consistent naming (CamlCase
syntax) and old commands are no more available. If you doesn’t want to change your mind or use
old latex files, you have to use oldcommands option to enable old commands back. Here are these
commands:

• \SetNoLine becomes \SetAlgoNoLine

• \SetVline becomes \SetAlgoVlined

• \Setvlineskip becomes \SetVlineSkip

• \SetLine becomes \SetAlgoLined

• \dontprintsemicolon becomes \DontPrintSemicolon

• \printsemicolon becomes \PrintSemicolon

• \incmargin becomes \IncMargin

• \decmargin becomes \DecMargin

• \setnlskip becomes \SetNlSkip

• \Setnlskip becomes \SetNlSkip

• \setalcapskip becomes \SetAlCapSkip

• \setalcaphskip becomes \SetAlCapHSkip

• \nlSty becomes \NlSty

• \Setnlsty becomes \SetNlSty

• \linesnumbered becomes \LinesNumbered

• \linesnotnumbered becomes \LinesNotNumbered

16

• \linesnumberedhidden becomes \LinesNumberedHidden

• \showln becomes \ShowLn

• \showlnlabel becomes \ShowLnLabel

• \nocaptionofalgo becomes \NoCaptionOfAlgo

• \restorecaptionofalgo becomes \RestoreCaptionOfAlgo

• \restylealgo becomes \RestyleAlgo

• \gIf macros and so on do no more exist

6 Environments defined in the package

This package provides 4 environments :

algorithm: the main environment, the one you will used most of the time.

algorithm*: same as the precedent, but used in a two columns text, puts the algorithm across
the two columns.

procedure: This environment works like algorithm environment but:

• the ruled (or algoruled) style is recommended.

• the caption now writes Procedure name...

• the syntax of the \caption command is restricted as follow: you MUST put a name
followed by 2 braces like this “Name()”. You can put arguments inside the braces and
text after. If no argument is given, the braces will be removed in the title.

• label now puts the name (the text before the braces in the caption) of the procedure
or function as reference (not the number like a classic algorithm environment).

• name of the procedure or function set in caption is automatically defined as a KwFunc-
tion and so can be used as a macro. For example, if inside a procedure environment
you set \caption{myproc()}, you can use \myproc macro in you main text. Beware
that the macro is only defined after the \caption!

• nokwfunc unable the feature described above in function and procedure environment.
Useful if you use name of procedure or function that cannot be a command name as a
math display for example.

procedure*: same as the precedent, but used in a two columns text outs the procedure across
the two columns.

function: as the precedent but with Function instead of procedure in the title.

function*: same as the precedent, but used in a two columns text outs the function across the
two columns.

If you don’t like algorithm or look for something else, you can change the name of algorithm
by using command below:

\SetAlgorithmName{algorithmname}{algorithmautorefname}{list of algorithms name} which
redefines name of the algorithms and the sentence list of algorithms. Example:
\SetAlgorithmName{Protocol}{List of protocols} if you prefer protocol than algorithm.
Second argument is the name that \autoref, from hyperref package, will use.

The same exists for procedure and function environment, the difference is that list of algorithms
is not change and keep its original name:

17

\SetAlgoProcName{aname}{anautorefname} sets the name of Procedure printed by procedure
environment (the environment prints Procedure by default). Second argument is the name
that \autoref, from hyperref package, will use.

\SetAlgoFuncName{aname}{anautorefname} sets the name of Function printed by procedure en-
vironment (the environment prints Function by default). Second argument is the name that
\autoref, from hyperref package, will use.

7 The options of the package

7.1 language option

croatian: to have for example Algoritam: instead of algorithm:.

czech: to have for example Algoritmus: instead of algorithm:.

english: the default.

french: to have for example algorithme : instead of algorithm:.

german: to have for example Prozedur : instead of procedure:.

ngerman: to have german option as babel

portugues: to have for example Algoritmo: instead of algorithm:.

spanish: to have for example Algoritmo: instead of algorithm:.

onelanguage: allows, if using standard keywords listed below, to switch from one language to
another without changing keywords by using appropriate language option:

• KwIn, KwOut, KwData, KwResult

• KwTo KwFrom

• KwRet, Return

• Begin

• Repeat

• If, ElseIf, Else

• Switch, Case, Other

• For, ForPar, ForEach, ForAll, While

7.2 compatibility issue

algo2e: changes the name of environment algorithm into algorithm2e and so allows to use the
package with some journal style which already define an algorithm environment. Changes
also the command name for the list of algorithms, it becomes \listofalgorithmes

endfloat: endfloat packages doesn’t allow float environment inside other environment. So using
it with figure option of algorithm2e makes error. This option enables a new environment
algoendfloat to be used instead of algorithm environment that put algorithm at the end. al-
goendfloat environment make algorithm acting as endfloat figures. This option load endfloat
package, so it is required to have it.

18

norelsize: starting from this release (v4.00), algorithm2e package uses relsize package in order to
get relative size for lines numbers; but it seems that some rare classes (such as inform1.cls)
are not compatible with relsize; to have algorithm2e working, this option makes algorithm2e
not to load relsize package and go back to previous definition by using \scriptsize font for
lines numbers.

slide: require package color. To be used with slide class in order to have correct margins.

nokwfunc disable the setting in \KwFunction of procedure’s or function’s name (see section 6) of
function and procedure environment. Useful if you use name of procedure or function that
cannot be a command name as a math display for example.

7.3 environment display and use

7.3.1 boxed, ruled, plain environment

boxed: to have algorithms enclosed in a box.

boxruled: surround algorithm by a box, puts caption above and add a line after caption.

ruled: to have algorithms with a line at the top and the bottom. Note that the caption is not
centered under the algorithm anymore but is set at the beginning of the algorithm.

algoruled: as above but with extra spaces after the rules.

tworuled: tworuled acts like ruled but doesn’t put a line after the title.

plain: the default, with no feature.

7.3.2 algorithm numbering

algochapter: algorithms are numbered within chapter numbers.

algosection: (default) algorithms are numbered within section numbers.

algopart: algorithms are numbered within part numbers.

procnumbered: makes the procedure and function to be numbered as algorithm.

7.3.3 figure and toc

figure: algorithms are put in classical figures and so are numbered as figures and putted in the
\listoffigures.

dotocloa adds an entry in the toc for the list of algorithms. This option loads package tocbibind
if not already done and so list of figures and list of tables are also added in the toc. If you want
to control which ones of the lists will be added in the toc, please load package tocbibind

before package algorithm and give it the options you want.

7.4 code typesetting

7.4.1 blocks display

lines

lined: \SetAlgoLined becomes the default, see section 9.6 for explanations about the \SetAlgoLined
macros.

vlined: \SetAlgoVlined becomes the default, see section 9.6 for explanations about the \SetAlgoVlined
macros.

19

noline: \SetNoline becomes the default, see section 9.6 for explanations about the \SetNoline
macros.

block markers

displayblockmarkers \AlgoDisplayBlockMarkers becomes the default, see section 9.6 for expla-
nations about the \AlgoDisplayBlockMarkers macro.

7.4.2 end keywords

longend the end keyword are longer and different for each macro. For example endif for a
if-then-else macro.

shortend the “end keyword” of the macros is just end (default).

noend the “end keyword” of the macros is not printed.

7.4.3 comments

scright (default) right justified side comments (side comments are flushed to the right)

scleft left justified side comments (side comments are put right after the code line)

fillcomment (default) end mark of comment is flushed to the right so comments fill all the width
of text

nofillcomment end mark of comment is put right after the comment

7.4.4 lines numbers

linesnumbered: lines of the algorithms are numbered except for comments and input/output
(KwInput and KwInOut). You must use \nllabel{label} to label thoses lines.

linesnumberedhidden: lines of the algorithms are numbered as linesnumbered but numbers are
not shown. \ShowLn and \ShowLnLabel{label} show the number on line they are put.

commentsnumbered: makes comments be numbered if numbering is active.

inoutnumbered: makes data input/output be numbered if numbering is active.

rightnl: put lines numbers to the right of the algorithm instead of left.

resetcount the line numbers are reset to 0 at the beginning of each algorithm (by default).

noresetcount the contreverse of the precedent. To reset the line counter to 0 do:
\setcounter{AlgoLine}{0}

algonl the line numbers will be prefixed with the number of the current algorithm. Take care
to set the caption of the algorithm at the beginning of the environnement, else you will have
the precedent algorithm number as the current one.

7.4.5 title of algorithms

titlenumbered: \TitleOfAlgo{title} prints Algorithm n: thetitle where n is the counter of the
algo.
Beware: \TitleOfAlgo don’t insert an entry in the list of algorithms. So do not use
\TitleOfAlgo with a caption. Both increment the counter of the algorithms.

titlenotnumbered (default) the macro \TitleOfAlgo{title} doesn’t number the algorithm.

20

8 Typesetting

There are eight text types in an algorithm environment:

1. The keywords (Kw): Macros which usually indicate words of the language. Some are
predefined and given with the algorithm package.

The user can define his own language keywords by using the different macros presented in
section 11 (see below for a short, non exhaustive list). He can also define simple keywords
with the \SetKw{Kw}{thetext} macro.

2. The Functions: (Func) Macros defined by the user which denote local functions or other
algorithms defined in the text. (See also function environment at section 6, which defines
not only function keyword but algorithm of the function.

They are defined using \SetKwFunction{KwFn}{Fn} where \KwFn will be the macro and Fn

the text printed.

3. The Arguments (Arg): The arguments of the Kw or Func macros.

4. The procedure and function name environment style (\ProcNameSty and \ProcNameFnt):
The type style of the caption of procedure and function environment.

5. The arguments of procedure and function environments style (\ProcArgSty and \ProcArgFnt):
the type style of the argument of procedure and function environments.

6. Data (Data): A type of text different from the default. You can use it as you want, and can
be useful for example to emphasize a Data structure or denotes some important variables.

They are defined with the help of the \SetKwData{KwDat}{data} macro, where \KwDat will
be the macro and data the text printed.

7. Block markers: style of keywords that are print at begin and end of block when dis-
playblockmarkers option is set or \AlgoDisplayBlockMarkers macro used. By default,
\BlockMarkersSty is set to \KwSty.

8. The text (the default): All the remaining text of the algorithm.

9 Commands provided with the package

Note that if you define macros outside the algorithm environment they are available in all the
document and, in particular, you can use them inside all algorithms without redefining them. Be
careful you can’t use macros beginning a block outside an algorithm environment.

9.1 global code typesetting commands

\; marks the end of a line. Don’t forget it !. By default, it prints a ‘;’. You can change this
with \DontPrintSemicolon.

\DontPrintSemicolon the ‘;’ are no more printed at the end of each line.

\PrintSemicolon prints a ‘; ’ at the end of each line (by default)

\BlankLine prints a blank line. In fact puts a vertical space of one ex.

\Indp indents plus → the text is shifted to the right.

\Indm indents minus → the text is shifted to the left.

21

\SetStartEndCondition{typo1}{typo2}{typo3} which sets typo around condition in For, If,
Switch, Case and Repeat macros. First two are used around For, If, Switch conditions,
First and third are used for Case and Repeat condition. Default definition is:
\SetStartEndCondition{ }{ }{}.
A common alternative is \SetStartEndCondition{ (}{) }{)}.
It can also be used to remove space around condition, for example if you want python style
commands: \SetStartEndCondition{ }{}{} and \SetKwFor{For}{for}{:}{}

\AlgoDisplayBlockMarkers that prints begin and end markers at the start and end of all block.
These begin and end keywords could be specified by using \SetAlgoBlockMarkersbegin
keywordsend keywords{c}{o}mmand. By default, these keywords are not printed but begin
and end are default keywords used if \AlgoDisplayBlockMarkers is called.

9.2 algorithm environment, caption, list of algorithms, ...

9.2.1 caption, title and changind reference of algorithms

Algorithm environment are float environment. So you can use classical \caption, \listofalgorithms{,}
\label. If you want a title but not a caption (for example to not add an enter in the list of algo-
rithm) you have \TitleOfAlgo{.} And if you want to name your algorithm and not number it,
you can change the reference of it by using \SetAlgoRefName{ref}:

\caption{thetitle} works as classical caption of figures. It inserts an entry in the list of algo-
rithms. Should be the standard way to put title of algorithms.

\TitleOfAlgo{thetitle} prints: “Algorithm n◦: thetitle” in the typography and size defined by
\SetTitleSty. Puts a vertical space below.
Beware: \TitleOfAlgo doesn’t insert an entry in the list of algorithms. So don’t use
\TitleOfAlgo with \caption. Both increment the counter of the algorithms.
note:with the french option prints Algorithme n◦:

\listofalgorithms inserts the list of all algorithms having a caption.

\SetAlgoRefName{ref} which changes the default ref (number of the algorithm) by the name
given in parameter. For example \SetAlgoRefName{QXY} sets reference of the algorithm to
QXY. If you label your algorithm and reference it, you will get QXY. On the same manner,
entry in the list of algorithm will name it QXY.

\SetAlgoRefRelativeSize{relative integer} which sets the output size of reference in list of
algorithms for references set by \SetAlgoRefName. The default is \SetAlgoRefRelativeSize{-2}.

9.2.2 setting style and layout of algorithm, caption and title

The following commands help you to define the style and the layout of the caption:

\SetAlgoCaptionSeparator{sep} which sets the separator between title of algorithms (Algorithm
1) and the name of the algorithm. By default it’s ’:’ and caption looks like ”Algorithm 2:
name” but now you can change it by using for example which will give ”Algorithm 3.
name”.

\AlCapSkip is the dimension of the distance between algorithm body and caption in plain and
boxed mode. You can change by hands or by using \SetAlCapSkip{0ex}.

\SetAlCapSkip{length} sets the lenght of \AlCapSkip) dimension between algorithm body and
caption.

\SetAlCapHSkip{length} sets the horizontal skip before Algorithm: in caption when used in
ruled algorithm.

22

\SetTitleSty{type style}{type size} sets the typography and size of the titles defined with
the macro \TitleOfAlgo{} (not with \caption).

\NoCaptionOfAlgo doesn’t print Algorithm and its number in the caption. This macros is ONLY
active for “algoruled” or “ruled” algorithms and for the next algorithm. For example, it is
useful when the algorithm just describes a function and you only want to display the name
of the function in the caption.

\RestoreCaptionOfAlgo restores correct captions that was corrupted by a \NoCaptionOfAlgo
macro.

\SetAlgoCaptionLayout{style} sets global style of the caption; style must be the name of a
macro taking one argument (the text of the caption). Examples below show how to use it:

• \SetAlgoCaptionLayout{centerline} to have centered caption;

• \SetAlgoCaptionLayout{textbf} to have bold caption.

If you want to apply two styles in the same time, such as centered bold, you have to de-
fine you own macro and then use \SetAlgoCaptionLayout with its name. \AlCapFnt and
\AlCapNameFnt can change the font used in caption, beware of interactions between this
three commands.

Note that two length control the layout of ruled, algoruled, boxruled algorithms caption.
\interspacetitleruled and \interspacetitleboxruled are described section 9.6.

9.3 line numbering

9.3.1 labelling and numbering lines

AlgoLine is the counter used to number the lines. It’s a standard counter, so LATEXcommands
works with it.

linesnumbered, linesnumberedhidden and commentsnumbered (see above section 7) are the op-
tions controlling auto-numbering of lines. You can also control this feature manually and precisely
with the following commands:

\LinesNumbered makes lines of the following algorithms be auto-numbered. This command cor-
responds to linesnumbered option.

\LinesNumberedHidden makes lines of the following algorithms be auto-numbered, but numbers
stay hidden. You have to use \ShowLn and \ShowLnLabel to see them. This command
corresponds to linesnumberedhidden option.

\LinesNotNumbered makes lines of the following algorithms no be auto-numbered.

\nllabel{label} macro for labelling lines when auto-numbering is active.

\nl numbers the line: must begin the line. You can use \label to label the line and reference it
further.

\lnl{label} numbers and labels the line : must begin the line. Do a Beware this has changed
from release 3\nl\label{label} in one time. Prefer to use a classical \label as it is more
readable.

\nlset{text} works as \nl except that the additional argument is the text to put at the beginning
of the line. This text becomes the reference if you label it and \ref will print it instead of
classical number.

\lnlset{text}{label} works for \nlset as \lnl for \nl. Prefer to use a classical \label as it
is more readable.

23

\ShowLn shows number of the line when linesnumberedhidden is activated.

\ShowLn{label} same as precedent but with a label. Prefer to use \ShowLn with a classical
\label.

9.3.2 setting style of lines numbers

The following command allows you to change the way line numbers are printed:

\SetNlSty{}{<txt before>}{<txt after>} defines how to print line numbers:
will print { <txt bef> thelinenumber <txt aft>}.
By default \SetNlSty{textbf}{}{}.

\SetNlSkip{length} sets the value of the space between the line numbers and the text, by default
1em.

\SetAlgoNLRelativeSize{number} sets the relative size of line numbers. By default, line num-
bers are two size smaller than algorithm text. Use this macro to change this behavior. For ex-
ample, \SetAlgoNlRelativeSize{0} sets it to the same size, \SetAlgoNlRelativeSize{−1}
to one size smaller and \SetAlgoNlRelativeSize{1} to one size bigger.

Example below shows use of these macros:

\SetNlSty{texttt}{[}{]}

\SetAlgoNlRelativeSize{0}

\SetNlSkip{0em}

\nl\KwIn{input data}

\nl\KwOut{output data}

\nl\tcc{a comment line in C-style}

\nl\Repeat{\nl$e<\tau$}{

\nl$f_n\leftarrow Y_1$\;

\nl$f_{n+1}\leftarrow f_n\times f_{n-1}$\;

\nl$e\leftarrow \frac{f_n}{2}$\;

}

\nl\KwRet{e}

=⇒

[2][2]Input: input data
[4][4]Output: output data
[6][6]/* a comment line in C-style */

[8][8]repeat
[10][10] fn ← Y1;
[12][12] fn+1 ← fn × fn−1;

[14][14] e← fn
2 ;

[15]until[16] e < τ ;
[18][18]return e

9.4 math display

If you need to use math display to handle complex mathematics as matrix, using standard \[\]
or $$ will not allow correct numbering and end line management. If you don’t need line numbers,
there is no problem. If you want line numbers, please use algomathdisplay environment instead
of \[\] or $$. It will work as standard math display but line spacing, line numbers, end line will
be managed correcly

9.5 standard styles

9.5.1 standard font shapes and styles

Almost every text in algorithm has his own style that can be customized. The following com-
mands correspond to the different styles used by the package. They can be customized by using
corresponding “\Set commands” (see section 9.5.3)

\AlFnt is used at the beginning of the body of algorithm in order to define the fonts used for
typesetting algorithms. You can use it elsewhere you want to typeset text as algorithm
For example you can do to have algorithms typeset in small sf font. Default is nothing so
algorithm is typeset as the text of the document.

\KwSty{<text>} sets <text> in keyword type style.

24

\FuncSty{<text>} sets <text> in function type style.

\ArgSty{<text>} sets <text> in argument type style.

\DataSty{<text>} sets <text> in data typography.

\CommentSty{<text>} sets <text> in comment typography.

\NlSty{<text>} sets <text> in number line typography.

\ProcNameSty{<text>} sets <text> in procedure style of procedure and function environment
(by default the same as \AlCapSty{)}. (see section 9.5.2 for more explanations and details)

\ProcFnt{<text>} sets <text> in procedure typography of procedure and function environment
(by default the same as \AlCapFnt{)}. (see section 9.5.2 for more explanations and details)

\ProcArgSty{<text>} sets <text> in argument style of procedure and function environment
(by default the same as \AlCapNameSty{)}. (see section 9.5.2 for more explanations and
details)

\ProcArgFnt{<text>} sets <text> in argument typography of procedure and function environ-
ment (by default the same as \AlCapNameFnt{)}. (see section 9.5.2 for more explanations
and details)

\BlockMarkersSty{<text>} sets <text> in block markers typography (by default the same as
\KwSty{)} (see section 9.6 for more explanations and details on block markers).

9.5.2 caption and title font style

\AlCapSty, \AlCapNameSty, \AlCapFnt, \AlCapNameFnt, \ProcSty, \ProcFnt, \ProcNameSty,
\ProcNameFnt, \ProgArgSty, \ProgArgFnt and corresponding “\Set commands” (see section 9.5.4)
\SetAlCapSty, \SetAlCapNameSty, \SetAlCapFnt, \SetAlCapNameFnt, \SetProcSty, \SetProcFnt,
\SetProcNameSty, \SetProcNameFnt, \SetProgArgSty, \SetProgArgFnt control the way caption
of algorithm and procedure/function environment are printed.
\AlCapSty and \AlCapFnt are used to define style and font shape of “Algorithm #:” in

caption. \AlCapNameSty and \AlCapNameFnt are used to define style and font shape of the caption
text. In fact a caption \caption{my algorithm} is printed as follow :

\AlCapSty{\AlCapFnt Algorithm #:}\AlCapNameSty{\AlCapNameFnt my algorithm}.

By default, \AlCapSty is textbf and \AlCapFnt is nothing. \AlCapNameSty keeps text as it
is, and \AlCapNameFnt do nothing.
\ProcSty and \ProcFnt are used to define style and font shape of “Procedure” in caption of

procedure and function environment. \ProcNameSty and \ProcNameFnt are used to define style
and font shape of the procedure or function name. \ProcArgSty and \ProgArgFnt are used to
define style and font shape of arguments in procedure/function environment. In fact a caption
\caption{Proc(int i)} of procedure/function environment is printed as follow :

\ProcSty{\ProcFnt Procedure}\ProcNameSty{\ProcNameFnt Proc(}%
\ProgArgSty{\ProgArgFnt int i}\ProcNameSty{\ProcNameFnt)}.

By default, \ProcSty is \AlCapSty and \ProcFnt is \AlCapFnt. \ProcNameSty keeps text as
it is, and \ProcNameFnt do nothing.

\AlCapSty{<text>} sets <text> in caption title typography, that is the same used, together
with \AlCapFnt, to print Algorithm #:, more precisely it is printed as follow:
\AlCapSty{\AlCapFnt Algorithm #:}
which gives actually “Algorithm #:”. By default \AlCapSty is textbf.

25

\AlCapNameSty{<text>} sets <text> in caption name typography, that is the same used, to-
gether with \AlCapNameFnt to print the name of caption you set by calling \caption{name}.
More precisely it is printed as follow:
\AlCapNameSty{\AlCapNameFnt name}
which gives “name”. By default \AlCapNameSty is textnormal which means print in stan-
dard text.

\AlCapFnt{<text>} sets <text> in font shape of caption title, that is the same used, together
with \AlCapSty, to print Algorithm #:, more precisely it is printed as follow:
\AlCapSty{\AlCapFnt Algorithm #:}
which gives actually “Algorithm #:”. By default \AlCapFnt is \relax which means keep
text as it is.

\AlCapNameFnt{<text>} sets <text> in caption name typography, that is the same used, to-
gether with \AlCapNameSty to print the name of caption you set by calling \caption{name}.
More precisely it is printed as follow:
\AlCapNameSty{\AlCapNameFnt name}
which gives “name”. By default \AlCapNameFnt is \relax which means keep text as it is.

\ProcSty{<text>} sets <text> in procedure/function caption title typography, that is the same
used, together with \ProcFnt, to print Procedure, more precisely it is printed as follow:
\ProcSty{\ProcFnt Procedure}
which gives actually “Procedure”. By default \ProcSty is \AlCapSty.

\ProcNameSty{<text>} sets <text> in procedure name typography, that is the same used, to-
gether with \ProcNameFnt to print the name of caption you set by calling \caption{Proc(int
i)}. More precisely it is printed as follow:
\ProcNameSty{\ProcNameFnt Proc(}
which gives “Proc(”. By default \ProcNameSty is \AlCapNameSty which means print in
standard text.

\ProcArgSty{<text>} sets <text> in argument of procedure/function typography, that is the
same used, together with \ProcArgFnt, to print int i if \caption{Proc(int i)} was
called. More precisely it is printed as follow:
\ProcArgSty{\ProcArgFnt int i}
which gives actually “int i”. By default \ProcArgSty is \AlCapNameSty;

\ProcFnt{<text>} sets <text> in font shape of caption title, that is the same used, together
with \ProcSty, to print Procedure, more precisely it is printed as follow:
\ProcSty{\ProcFnt Procedure}
which gives actually “Procedure”. By default \ProcFnt is \relax which means keep text
as it is.

\ProcNameFnt{<text>} sets <text> in procedure/function name typography, that is the same
used, together with \ProcNameSty to print the name of caption you set by calling \caption{Proc(int
i)}. More precisely it is printed as follow:
\ProcNameSty{\ProcNameFnt Proc(}
which gives “Proc(”. By default \ProcNameFnt is \relax which means keep text as it is.

\ProcArgFnt{<text>} sets <text> in font shape of argument of procedure/environment caption,
that is the same used, together with \ProcArgSty, to print int i if \caption{int i} was
called. More precisely it is printed as follow:
\ProcArgSty{\ProcFnt int i}
which gives actually “int i”. By default \ProcArgFnt do nothing.

26

\AlTitleSty{<text>} is used to typeset “Algorithm #:” in title, together with \AlTitleFnt.
You can use it to have text as your titles. Precisely, titles are typeset as follow:
\AlTitleSty{\AlTitleFnt{Algorithm #:}}.

\AlTitleFnt{<text>} is used to typeset “Algorithm #:” in title, together with \AlTitleSty.
You can use it to have text as your titles. Precisely, titles are typeset as follow:
\AlTitleSty{\AlTitleFnt{Algorithm #:}}.

9.5.3 setting font standard font shapes and styles

With the following commands you can customize the style and have the look you want for your
algorithms:

\SetAlFnt{} define the fonts used for typesetting algorithms.

You have to give commands to set the font in argument. You can use it elsewhere you want to
typeset text as algorithm. For example you can do \SetAlFnt{\small\sf} to have algorithms
typeset in small sf font.

The next ones require to give in parameter name of a macro (whithout \) which takes one
argument. For example, \SetAlCapFnt{textbf} (see section 9.2.2) defines the default behaviour
of \AlCapFnt. If you want to do more complicated thing, you should define your own macro and
give it to \SetAlCapFnt or \SetAlCapNameFnt. Here are two examples:

• \newcommand{\mycapfn}[1]{\tiny #1}\SetAlCapNameFnt{mycapfnt}

• \newcommand{\mycapfn}[1]{\textsl{\small #1}}\SetAlCapNameFnt{mycapfnt}

Here is the complete list of these macros:

\SetKwSty{} sets the Kw typography to (by default: textbf).

\SetFuncSty{} sets the function typography (by default: texttt).

\SetArgSty{} sets the argument typography (by default: emph).

\SetDataSty{} sets the data typography (by default: textsf).

\SetCommentSty{} sets the comment text typography (by default: texttt).

\SetNlSty{} sets the number line typography (by default: \relsize{-2})

\SetProcNameSty{} sets caption typography of procedure and function environment (by
default the same as \AlCapSty{)}.

\SetProcArgSty{} sets argument typography of procedure and function environment (by
default the same as \AlCapNameSty{)}.

\SetBlockMarkersSty{} sets block markers typography (by default the same as \KwSty{)}.

9.5.4 setting caption and title font style

The following commands allow to redefine Fnt macros. This ones requires to give directly com-
mands that define the font shape you want. They works as \SetAlFnt{d}escribed above. For ex-
ample you can do \SetAlCapFnt{\large\color{red}} to have Algorithm #: in caption printed
in large red font.

\SetAlCapFnt{} sets the font used for {algorithm: } in caption of algorithm (default is
set to \relax).

27

\SetAlCapNameFnt{} sets the font used by caption text. Default is \relax and text is
kept as it is.

\SetAlTitleFnt{} sets the font used in \TitleOfAlgo command (default is set to \relax,
so text is kept as it is).

The next commands allow to redefine Sty macros for caption or title. As “\Set commands” of
basic font style (see section 9.5.3), they require a name of a command in argument, this command
have to take one argument, the text to be typeset. They should be combined with previous
commands to redefine display of caption or title. Examples of use:

• \newcommand{\mycapsty}[1]{\textbf{\emph{#1}}}\SetAlCapNameSty{mycapsty}
caption will be print emphased and in bold face.

• \SetAlCapNameFnt{\tiny} set font to tiny size.

• if you combine \SetAlCapNameSty{mycapsty} and \SetAlCapNameFnt{\tiny} will give tiny
bold empased caption.

Now the commands:

\SetAlCapSty{<commandname>}: sets the command that will be used by \AlCapSty to define
style of Algorithm #: in caption. The argument is a name of a command (without \).
This command have to take one argument, the text to be formatted. Default is set to:
\SetAlCapSty{textbf}.

\SetAlCapNameSty{<commandname>}: sets the command that will be used by \AlCapNameSty
to define style of caption text. The argument is a name of a command (without \).
This command have to take one argument, the text to be formatted. Default is set to:
\SetAlCapSty{textnormal}.

\SetAlTitleSty{<commandname>} sets the command that will be used by \AlTitleSty to define
style of algorithm title given by \TitleOfAlgo (default is set to \SetAlTitleSty{textbf}).

Note that by combining Fnt and Sty macros you can define almost all styles easily. For
example, the last example above can be define in a simplier way that previously presented by
doing:

• \SetAlCapNameSty{textsl}\SetAlCapNameFnt{\small}

9.6 controlling the layout of algorithms

\RestyleAlgo{style} change the layout of the algorithms as do options boxed, boxruled, ruled
and algoruled.

\RestyleAlgo{style} sets the style of the following algorithms to that given by this macro (plain,
boxed, ruled, algoruled) unlike those indicated in the options of the package (see options of
the package).

\SetAlgoVlined prints a vertical line followed by a little horizontal line between the start and
the end of each block. Looks like that :

\SetNoline Doesn’t print vertical lines (by default). The block is marked with keywords such as
begin, end.

\SetAlgoLined prints vertical lines between bloc start-end keywords as begin, end.

\SetAlgoLongEnd acts like longend option.

\SetAlgoShortEnd acts like shortend option.

28

\SetAlgoNoEnd acts like noend option.

\SetInd{before rule space}{after rule space} sets the size of the space before the vertical
rule and after. In \NoLine mode the indentation space is the sum of these two values, by
default 0.5em and 1em

\Setvlineskip{length} sets the value of the vertical space after the little horizontal line which
closes a block in vlined mode.

\SetAlgoSkip{skip command} Algorithms puts extra vertical space before and after to avoid
having text bumping lines of boxed or ruled algorithms. By default, this is a . You can

change this value with this macro. The four possibilities are:

• \SetAlgoSkip{}] for no extra vertical skip

• \SetAlgoSkip{smallskip}] to act as the default behaviour

• \SetAlgoSkip{medskip}] to have a bigger skip

• \SetAlgoSkip{bigskip}] to have the bigger skip

Note that you can apply the skip you want by defining a macro doing it and passing its
name (without \) to \SetAlgoSkip

\SetAlgoInsideSkip{skip command} Algorithms puts no extra vertical space before and after
the core of the algorithm. So text is put right after the lines in boxed or ruled style. To put an
extra space, use \SetAlgoInsideSkip{skip command}, for example \SetAlgoInsideSkip{smallskip},
like for \SetAlgoSkip{skip command}.

\algomargin this is the value of the margin of all algorithms. You can change it by setting:
\setlength{\algomargin}{2em} for example. The default value is the sum of the two
dimensions \leftskip and \parindent when the algorithm2e package is loaded. Note that
if you change this value, it will take effect with the next algorithm environment. So even if
you change it inside an algorithm environment, it will not affect the current algorithm.

\IncMargin{length} increases the size of the \algomargin by the length given in argument.

\DecMargin{length} decreases the size of the \algomargin by the length given in argument.

\DecMargin{length} decreases the size of the \algomargin by the length given in argument.

\SetAlgoNlRelativeSize{number} sets the relative size of line number (see section 9.3) for more
details on this command.

\SetAlgoCaptionLayout{style} sets the global style of caption (see section 9.2 for more details).

\DisplayBlockMarkers acts like displayblockmarkers option: each block will be started by a begin
keyword and be ended by an end keywords. This is tricky to use but allows to customize
syntax to match almost every language (see section 4 for examples showing how to use it).
\SetAlgoBlockMarkers{begin keyword}{end keyword} defines begin and end keywords
that will be used by \DisplayBlockMarkers. Default keywords are begin and end. but for
example you can set \DisplayBlockMarkers{\{}{\}} to match c-style syntax.

Some length are used to set the layout of ruled, algoruled and boxruled algorithms caption.
These length have no particular macro to set them but can be changed by classical \setlength
commmand:

interspacetitleruled (2pt by defaut) which controls the vertical space between rules and title
in ruled and algoruled algorithms.

interspacetitleboxruled (2\lineskip by default) which controls the vertical space between
rules and title in boxruled algorithms.

29

9.7 comments

There are two ways to do comments in algorithm :

1. by using a comment macro defined by \SetKwComment{command}{right mark}{left mark}
(see below) like \tcc;

2. by using side comment, it means comment put in between () after control command like
if-then-else, for, ... macros.

At section 10.3, you can see how \tcc is defined and at section 10.4 you can look at some
examples how to use it with if then else like commands and finally you can look at section 11.4
how to define comments and explanations on the different macros and ways of printing comments.
Note also that comments are not numbered by default when using linesnumbered option. You have
to set commentsnumbered to number them also.

The following macro control how comment are typeseted.

\SetSideCommentLeft right justified side comments (side comments are flushed to the right),
equivalent to scleft option.

\SetSideCommentRight left justified side comments (side comments are put right after the code
line) , equivalent to scright option.

\SetFillComment end mark of comment is flushed to the right so comments fill all the width of
text, equivalent to fillcomment option.

\SetNoFillComment end mark of comment is put right after the comment, equivalent to nofill-
comment option.

10 The predefined language keywords

Here are the english keywords predefined in the package. There are other language predefined
macros provided, such as french keywords, see section 12 for a list of other language keywords.
All these keywords are defined using macros provided by the package and described in section 11.

10.1 Input, output macros...

• \KwIn{input}

• \KwOut{output}

• \KwData{input}

• \KwResult{output}

10.2 basic keywords and blocks

1. One simple common keyword:

• \KwTo

2. One keyword requiring an argument:

• \KwRet{[value]}
• \Return{[value]}

3. A block:

• \Begin{block inside}
• \Begin(begin comment){block inside}

30

10.3 comments

• \tcc{line(s) of comment}: comment “ la” C

• \tcc*{right justified side comment}: comment “ la” C

• \tcc*[r]{right justified side comment, ends the line (default)}: comment “ la” C

• \tcc*[l]{left justified side comment, ends the line}: comment “ la” C

• \tcc*[h]{left justified comment, without end line; useful with ”if-then-else” macros for ex-
ample}: comment “ la” C

• \tcc*[f]{right justified comment, without end line; useful with ”if-then-else” macros for ex-
ample}: comment “ la” C

• \tcp{line(s) of comment}: comment “ la” C++

• \tcp*{right justified side comment}: comment “ la” C++

• \tcp*[r]{right justified side comment, ends the line (default)}: comment “ la” C++

• \tcp*[l]{left justified side comment, ends the line}: comment “ la” C++

• \tcp*[h]{left justified comment, without end line; useful with ”if-then-else” macros for ex-
ample}: comment “ la” C++

• \tcp*[f]{right justified comment, without end line; useful with ”if-then-else” macros for
example}: comment “ la” C++

You can see some examples of this macros with if then else at the end of section 11.5

10.4 if-then-else macros

• \If{condition}{then block}

• \If(then comment){condition}{then block}

• \uIf{condition}{then block without end}

• \uIf(then comment){condition}{then block without end}

• \lIf{condition}{then’s line text}

• \lIf(if comment){condition}{then’s line text}

• \ElseIf{elseif block}

• \ElseIf(elseif comment){elseif block}

• \uElseIf{elseif block without end}

• \uElseIf(elseif comment){elseif block without end}

• \lElseIf{elseif’s line text}

• \lElseIf(elseif comment){elseif’s line text}

• \Else{else block}

• \Else(else comment){else block}

• \uElse{else block without end}

31

• \uElse(else comment){else block without end}

• \lElse{else’s line text}

• \lElse(else comment){else’s line text}

• \eIf{condition}{then block}{else block}

• \eIf(then comment){condition}{then block}(else comment){else block}

• \eIf(then comment){condition}{then block}{else block}

• \eIf{condition}{then block}(else comment){else block}

• \leIf{condition}{then block}{else block}

• \leIf(comment){condition}{then block}{else block}

10.5 multiple condition selection:

• \Switch(switch comment){condition}{Switch block}

• \Switch{condition}{Switch block}

• \Case{a case}{case block}

• \Case(case comment){a case}{case block}

• \uCase{a case}{case block without end}

• \uCase(case comment){a case}{case block without end}

• \lCase{a case}{case’s line}

• \lCase(case comment){a case}{case’s line}

• \Other{otherwise block}

• \Other(other comment){otherwise block}

• \lOther{otherwise’s line}

• \lOther(other comment){otherwise’s line}

10.6 loops with ”end condition” test at the beginning

• \For{condition}{text loop}

• \For(for comment){condition}{text loop}

• \lFor{condition}{line text loop}

• \lFor(for comment){condition}{line text loop}

• \While{condition}{text loop}

• \While(while comment){condition}{text loop}

• \lWhile{condition}{line text loop}

• \lWhile(while comment){condition}{line text loop}

• \ForEach{condition}{text loop}

32

• \ForEach(foreach comment){condition}{text loop}

• \lForEach{condition}{line text loop}

• \lForEach(foreach comment){condition}{line text loop}

• \ForAll{condition}{text loop}

• \ForAll(forall comment){condition}{text loop}

• \lForAll{condition}{line text loop}

• \lForAll(forall comment){condition}{line text loop}

10.7 loops with ”end condition” test at the end

• \Repeat{end condition}{text loop}

• \Repeat(repeat comment){end condition}{text loop}(until comment)

• \Repeat(repeat comment){end condition}{text loop}

• \Repeat{end condition}{text loop}(until comment)

• \lRepeat{end condition}{line text loop}

• \lRepeat(repeat comment){end condition}{line text loop}

10.8 how default keywords are obtained

1. \SetKwInput{KwData}{Data}
\SetKwInput{KwResult}{Result}
\SetKwInput{KwIn}{Input}
\SetKwInput{KwOut}{Output}

2. \SetKw{KwTo}{to}

3. \SetKw{KwRet}{return}
\SetKw{Return}{return}

4. \SetKwBlock{Begin}{begin}{end}

5. \SetKwComment{tcc}{/*}{*/}
\SetKwComment{tcp}{//}{}

6. \SetKwIF{If}{ElseIf}{Else}{if}{then}{else if}{else}{endif}

7. \SetKwSwitch{Switch}{Case}{Other}{switch}{do}{case}{otherwise}{endcase}endsw

8. \SetKwFor{For}{for}{do}{endfor}
\SetKwFor{While}{while}{do}{endw}
\SetKwFor{ForEach}{foreach}{do}{endfch}
\SetKwAll{ForEach}{forall}{do}{endfall}

9. \SetKwRepeat{Repeat}{repeat}{until}

33

11 To define your own language keywords

Note that all these macros verify if the keywords are already defined and do a renewcommand if
they are. So you can overload the default definitions of this package with your own.

11.1 to define Input, output macros...

\SetKwInput{Kw}{input} defines the macro \Kw{arg} which prints input followed by ‘:’ in key
word typography, and behind the argument arg. Typically used to define macros such as
\Input{data} or \Output{result}. Note that arg will be shifted so that all the text is
vertically aligned and to the right of the ‘:’.

\SetKwInOut{Kw}{input} works as \SetKwInput{Kw}{input}. But the position of the ‘:’ is fixed
and set by the longest keyword defined by this macro.

\ResetInOut{input} resets the position of the ‘:’ for all macros defined previously by
\SetKwInOut{Kw}{input}. The new position is fixed depending on the size of the text
input given in argument.

11.2 to define basic keywords or blocks

\SetKw{Kw}{thetext} defines the macro \Kw which defines a keyword thetext and prints it in
keyword typography. It can take one argument: \Kw{arg}. If so, arg is printed in argument
typography. For example \Kw{thetext} could give: Kw thetext

\SetKwHangingKw{Kw}{thetext} defines a hanging keyword that should act like a combination
of \SetKwInput and \SetKw. In comparison with \SetKwInput, it doesn’t print ’:’ at end
of keyword and line is numbering if linesnumbered is set.
For example \SetKwHangingKw{HData}{Data\rightarrow} could gives:

1 Data→ a list of data and a long description of this data to be sure that text requires
several lines to be printed;

\SetKwData{Kw}{thetext} defines the macro \Kw{w}hich defines a data text. Prints thetext in
data typography. Note that this macros can takes one argument as function macros.

\SetKwArray{Kw}{array} which defines an array keywords Kw called array and printed in DataSty
style when call with \Kw. It can be used with one argument which denotes the element index:
\Kw{n} prints array[n] with array in \DataSty and n in \ArgSty.

\SetKwBlock{Begin}{begin}{end} defines a macro \Begin{txt} which denotes a block. The
text is surrounded by the words begin and end in keyword typography and shifted to the
right (indented). In \Vline or \Line mode a straight vertical line is added.
\Begin(side text){text} gives also text in a block surrounded by begin and end, but side
text if put after the begin keyword. Combined with \tcc*[f] macro, it allows you to put
comments on the same line as begin.

You can also use alternativ \uBegin{txt} which acts as \Begin{txt} but without end.
Useful for example as a part separator that doesn’t necessary need an end keyword.

\SetKwProg{Prog}{Title}{is}{end} Env is a block with ’Title’ (in CapSty style) at the begin-
ning followed by args followed by ’is’ then ’text’ inside a block ended by ’end’. If no ’end’
is specified, nothing is written (no blank line is inserted). Useful to typeset function or prog.
For example:

\SetAlgoLined

\SetKwProg{Fn}{Function}{ is}{end}

\Fn{afunc(i: int) : int}{return 0\;}

\SetKwProg{Def}{def}{:}{}

\Def{afunc(i: int)}{return 0\;}

=⇒

1 Function afunc(i: int) : int is
2 return 0;
3 end
4 def afunc(i: int):
5 return 0;

34

11.3 to define keywords as function

If you want describe the function by an algorithm, use instead function or procedure environment.

\SetKwFunction{KwFn}{Fn} defines a macro \KwFn{arg} which prints Fn in Function typography
and its argument arg in argument typography, surrounded by a pair of parentheses.

\SetKwFunction{Dothat}{Do that} defines the macro \DoThat{this}, which is equivalent
to \FuncSty{Do that(}\ArgSty{this}\FuncSty{)} which gives: Do that(this).

Note that you can also use it without arguments, it will be printed without ‘()’, example:
\SetKwFunction{Fn}{TheFunction} use as \Fn gives TheFunction.

Keywords (with or without arguments) and functions defined previously in normal text (not
in an algorithm environment) can be used outside an algorithm environment. You can use it
by typing \DoThat{toto} (for a function defined by \SetKwFunction{Dothat}{Do that}),
you will obtain Do That(toto).

11.4 to define comments

\SetKwComment{Comment}{start}{end} defines a macro \Comment{text comment} which writes
text comment between start and end. Note that start or end can be empty.
It defines also \Comment*{side comment text} macro which allows to put comment on the
same line as the code. This macro can take various option to control its behaviour:
\Comment*[r]{side comment text} put the end of line mark (’;’ by default) and side com-
ment text just after and right justified, then end the line. It is the default.
\Comment*[l]{side comment text} same thing but side comment text is left justified.
\Comment*[h]{side comment text} put side comment right after the text. No end of line
mark is put, and line is not terminated (is up to you to put \; to end the line).
\Comment*[f]{side comment text} same as the previous one but with side comment text
right justified.

11.5 to define if-then-else macros

\SetKwIF{If}{ElseIf}{Else}{if}{then}{else if}{else}{endif} defines several macros to give
the opportunity to write all if-then-else-elseif-endif possibilities:

• \If{cond}{Then’s text}
Then’s text is writen in a block (below then and on several lines) and terminating by
the endif given in the last argument.

• \If(comment){cond}{Then’s text}
as previous but put comment after then keyword. Usually use with comment macro
like \tcc*[f]{comment} or \tcp*[f]{comment}

• \ElseIf{ElseIf’s text}
ElseIf’s text is writen in a block and terminating by the endif.

• \ElseIf(comment){ElseIf’s text}
the same with comment.

• \Else{Else’s text}
Else’s text is writen in a block and terminating by the endif.

• \Else{Else’s text}
the same with comment.

• \lIf{cond}{Then’s text}
Then’s text is written on the same line as then. No endif is printed. Do not put \;
after Then’s text neither after \lIf.

35

• \lIf(comment){cond}{Then’s text}
the same with comment.

• \lElseIf{ElseIf’s text}
ElseIf’s text is written on the same line as else if. No endif is printed.

• \lElseIf(comment){ElseIf’s text}
the same with comment.

• \lElse{Else’s text}
Else’s text is written on the same line as else. No endif is printed.

• \lElse(comment){Else’s text}
the same with comment.

• \uIf{cond}{Then’s text} (for uncomplete if)
defines a If block unterminated like in a \eIf block, i.e. don’t print the endif or don’t
put the little horizontal line in Vline mode (see examples below).

• \uIf(comment){cond}{Then’s text}
the same with comment.

• \uElseIf{ElseIf’s text} (for uncomplete elseif)
Same explanation as for \uIf but with else if.

• \uElseIf(comment){ElseIf’s text}
the same with comment.

• \uElse{Else’s text} (for uncomplete else)
Same explanation as for \uElseIf but with else.

• \uElse{Else’s text}
the same with comment.

• \eIf{cond}{Then’s text}{Else’s text}
equivalent to the use of \uIf followed by \Else.

The macros which begin with a ‘l’ (l as line) denote that the text passed in argument will be
printed on the same line while with the others the text is printed in a block and shifted. You
should put \; at the end of “l macros”.

The macros which begin with a ‘u’ (u as uncomplete) denote that the text passed in argument
will be printed in a block not terminated by endif. They are useful to chain different alternatives.

The keywords then and else are automatically printed. cond is always printed in argument
typography just behind the keyword if.

All this macros can be combined with () and \Comment* macros to put comments after main
keywords as If, Else or ElseIf (see list of predefined keywords above and example below).

Some examples with \SetKwIF{If}{ElseIf}{Else}{if}{then}{else if}{else}{endif} the
default definition given in the package:

\SetAlgoVlined

\eIf{cond1}{

a line\;

a line\;

}{

another line\;

another line\;

}

=⇒

1 if cond1 then
2 a line;
3 a line;

4 else
5 another line;
6 another line;

—
\SetAlgoNoLine

\If{cond2}{

second if\;

second if\;

}

=⇒

1 if cond2 then
2 second if;
3 second if;

4 end

36

—

\lIf{cond4}{ok} \lElse{wrong}

\leIf{cond4}{ok}{wrong}
=⇒

1 if cond4 then ok;
2 else wrong;
3 if cond4 then ok else wrong;

—
\SetAlgoVlined

\lIf{cond5}{cond5 true}

\uElseIf{cond51}{

cond 5 false\;

but cond51 true\;

}

\ElseIf{}{

all is wrong\;

\Return result52\;

}

=⇒

1 if cond5 then cond5 true;
2 else if cond51 then
3 cond 5 false;
4 but cond51 true;

5 else if then
6 all is wrong;
7 return result52;

—
\SetAlgoLined

\uIf{cond6}{

cond6 is ok\;

always ok\;

}

\uElseIf{cond62}{

choose result62\;

\Return result62\;

}

\Else{

all is wrong\;

do something else\;

}

=⇒

1 if cond6 then
2 cond6 is ok;
3 always ok;

4 else if cond62 then
5 choose result62;
6 return result62;

7 else
8 all is wrong;
9 do something else;

10 end

—

37

Let’s have a look at what we can do

with if-then-else and side comments\;

\eIf{if-then-else test}{

no comment here\;

neither in then\;

}{

nor in else\;

}

\eIf(\tcc*[f]{then comment}){test}{

then with a comment\;

}(\tcc*[f]{comment in else})

{

here we are in else\;

}

\eIf(\tcc*[f]{then comment}){test}{

again a comment in then\;

}{

but not in else\;

}

\eIf{if-then-else test}{

this time, no comment in then\;

}(\tcc*[f]{else comment})

{

but one comment in else\;

}

Let’s try with other if possibilities\;

\lIf(\tcc*[h]{lif comment}){test}{text}

\uIf(\tcc*[f]{uif comment}){test}{

then text\;

}

\uElseIf(\tcc*[f]{comment}){test}{

elseif text\;

}

\lElseIf(\tcc*[h]{comment}){test}{text}

\lElse(\tcc*[f]{comment}){text}

=⇒

1 Let’s have a look at what we can do
with if-then-else and side comments;

2 if if-then-else test then
3 no comment here;
4 neither in then;

5 else
6 nor in else;
7 end
8 if test then /* then comment */

9 then with a comment;
10 else /* comment in else */

11 here we are in else;
12 end
13 if test then /* then comment */

14 again a comment in then;
15 else
16 but not in else;
17 end
18 if if-then-else test then
19 this time, no comment in then;
20 else /* else comment */

21 but one comment in else;
22 end
23 Let’s try with other if possibilities;
24 if test then text;/* lif comment */

25 if test then /* uif comment */

26 then text;
27 else if test then /* comment */

28 elseif text;
29 else if test then text;/* comment */

30 else text; /* comment */

11.6 to define multiple condition selection:

\SetKwSwitch{Switch}{Case}{Other}{switch}{do}{case}{otherwise}{endcase}endsw defines
several macros to give a complete Switch-do-case-otherwise environment:

• \Switch{iden}{switch’s block}
• \Switch(comment){iden}{switch’s block}
• \Case{cond}{Case’s block}
• \Case(comment){cond}{Case’s block}
• \uCase{cond}{Case’s block}
• \uCase(comment){cond}{Case’s block}
• \lCase{cond}{Case’s text}
• \lCase(comment){cond}{Case’s text}
• \Other{Otherwise’s block}
• \Other(comment){Otherwise’s block}
• \lOther{Otherwise’s text}

38

• \lOther(comment){Otherwise’s text}

The keywords do and endsw are automatically printed. iden and cond are always printed in
argument typography just behind the keywords Switch, Case and Otherwise. Here is an example
with the default keywords:

\Switch{the value of T}{

\uCase{a value}{

do this\;

do that\;

}

\lCase{another value}{one line}

\Case{last value}{

do this\;

break\;

}

\Other{

for the other values\;

do that\;

}

}

=⇒

1 switch the value of T do
2 case a value
3 do this;
4 do that;

5 case another value one line;
6 case last value
7 do this;
8 break;

9 end
10 otherwise
11 for the other values;
12 do that;

13 end

14 endsw

As for If-then-elseif-else-endif macro, you can use () to put comments after main keywords.

11.7 to define loops with ”end condition” test at the beginning

\SetKwFor{For}{for}{do}{endfor} defines a loop environment with stop-test done at the be-
ginning of the loop.

• \For{loop’s condition}{For’s text}
• \For(comment){loop’s condition}{For’s text}
• \lFor{loop’s condition}{For’s text}
• \lFor(comment){loop’s condition}{For’s text}

The keywords do and endfor are automatically printed. The loop condition is printed in
argument typography. For example:

\SetAlgoLined

\ForAll{elements of S_1}{

remove an element e from S_1\;

put e in the set S_2\;

}

\lFor{i=1 \emph{\KwTo}max}{mark i}\;

\ForEach{e in the set}{

put e in ${\cal E}$\;

mark e\;

}

=⇒

1 forall the elements of S1 do
2 remove an element e from S1;
3 put e in the set S2;

4 end
5 for i=1 tomax do mark i;
6 ;
7 foreach e in the set do
8 put e in E ;
9 mark e;

10 end

As for If-then-elseif-else-endif macro, you can use () to put comments after main keywords.

11.8 to define loops with ”end condition” test at the end

\SetKwRepeat{Repeat}{repeat}{until} defines a repeat-until environment (loop with stop-test
at the end of the loop):

• \Repeat{end loop condition}{the loop}

39

• \Repeat(comment after repeat){end loop condition}{the loop}
• \Repeat{end loop condition}{the loop}(comment after until)

• \Repeat(comment after repeat){end loop condition}{the loop}(comment after
until)

• \lRepeat{end loop condition}{only one line}
• \lRepeat(comment){end loop condition}{only one line}

It prints the loop condition behind the until after the text of the loop.For example:

\Repeat{this stop condition}{

the text of the loop\;

another line\;

always in the loop\;

}

\lRepeat{stop}{a one line loop}

=⇒

1 repeat
2 the text of the loop;
3 another line;
4 always in the loop;

5 until this stop condition;
6 repeat a one line loop until stop;

As for If-then-elseif-else-endif macro, you can use () to put comments after main keywords.

12 Other language predefined keywords

12.1 french keywords

Hey, I am a frenchy , so I have defined the same as in section 10 but in french.

1. \Donnees{données}
\Res{résultats}
\Entree{entrées}
\Sortie{sorties}

2. \KwA

\Retour{[valeur]}

3. \Deb{intérieur du bloc}

4. \eSi{condition}{bloc du alors}{bloc du sinon}
\Si{condition}{bloc du alors}
\uSi{condition}{bloc du alors sans fin}
\lSi{condition}{ligne du alors}
\SinonSi{condition}{bloc du sinonsi}
\uSinonSi{condition}{bloc du sinonsi sans fin}
\lSinonSi{condition}{ligne du sinonsi sans fin}
\Sinon{bloc du sinon}
\uSinon{bloc du sinon sans fin}
\lSinon{ligne du sinon}

5. \Suivant{condition}{bloc du Suivant-cas-alors} \uCas{cas où}{bloc de ce cas sans fin}
\Cas{cas où}{bloc de ce cas}
\lCas{cas où}{ligne de ce cas}
\Autre{bloc de l’alternative}
\lAutre{ligne de l’alternative}

40

6. \Pour{condition}{bloc de la boucle}
\lPour{condition}{ligne de la boucle}

7. \Tq{condition}{bloc de la boucle}
\lTq{condition}{ligne de la boucle}

8. \PourCh{condition}{bloc de la boucle}
\lPourCh{condition}{ligne de la boucle}

9. \PourTous{condition}{bloc de la boucle}
\lPourTous{condition}{ligne de la boucle}

10. \Repeter{condition d’arrêt}{bloc de la boucle}
\lRepeter{condition d’arrêt}{ligne de la boucle}

Here we describe how they are obtained:

1. \SetKwInput{Donnes}{Données}
\SetKwInput{Res}{Résultat}
\SetKwInput{Entree}{Entrées}
\SetKwInput{Sortie}{Sorties}

2. \SetKw{KwA}{à}
\SetKw{Retour}{retourner}

3. \SetKwBlock{Deb}{début}{fin}

4. \SetKwIF{Si}{SinonSi}{Sinon}{si}{alors}{sinon si}{alors}{finsi}

5. \SetKwSwitch{Suivant}{Cas}{Autre}{suivant}{faire}{cas où}{autres cas}{fin cas}fin d’alternative

6. \SetKwFor{Pour}{pour}{faire}{finpour}

7. \SetKwFor{Tq}{tant que}{faire}{fintq}

8. \SetKwFor{PourCh}{pour chaque}{faire}{finprch}

9. \SetKwFor{PourTous}{pour tous}{faire}{finprts}

10. \SetKwRepeat{Repeter}{répéter}{jusqu’à}

12.2 German keywords

• \Ein{Eingabe}
\Aus{Ausgabe}
\Daten{Daten}
\Ergebnis{Ergebnis}

• \Bis{bis}
\KwZurueck{zurück}
\Zurueck{zurück}

• \Beginn{Beginn}

41

• \Wiederh{stop condition}{loop}
\lWiederh{stop condition}{line loop}

• \eWenn{condition}{then text}{else text}
\Wenn{condition}{then text}
\uWenn{condition}{then text without end}
\lWenn{condition}{then line}
\SonstWenn{condition}{elseif text}
\uSonstWenn{condition}{elseif text without end}
\lSonstWenn{condition}{elseif line}
\Sonst{else text}
\uSonst{else text without end}
\lSonst{else line}

• \Unterscheide{conditions}switch-case-default text\Fall{case of}{text}
\uFall{case of}{text}
\lFall{case of}{line text}
\Anderes{default text}
\lAnderes{default line}

• \Fuer{condition}{loop}
\lFuer{condition}{line loop}

• \FuerPar{condition}{loop}
\lFuerPar{condition}{line}

• \FuerJedes{condition}{loop}
\lFuerJedes{condition}{line}

• \FuerAlle{condition}{loop}
\lFuerAlle{condition}{line}Ende

• \Solange{condition}{loop}Ende

\lSolange{condition}{line}

Here we describe how they are obtained:

• \SetKwInput{Ein}{Eingabe}
\SetKwInput{Aus}{Ausgabe}
\SetKwInput{Daten}{Daten}
\SetKwInput{Ergebnis}{Ergebnis}

• \SetKw{Bis}{bis}
\SetKw{KwZurueck}{zurück}
\SetKw{Zurueck}{zurück}

• \SetKwBlock{Beginn}{Beginn}{Ende}

• \SetKwRepeat{Wiederh}{wiederhole}{bis}

42

• \SetKwIF{Wenn}{SonstWenn}{Sonst}{wenn}{dann}{sonst wenn}{sonst}{Ende}

• \SetKwSwitch{Unterscheide}{Fall}{Anderes}{unterscheide}{tue}{Fall}{sonst}{Ende
Fall}Ende.

• \SetKwFor{Fuer}{für}{tue}{Ende}

• \SetKwFor{FuerPar}{für}{tue gleichzeitig}{Ende}

• \SetKwFor{FuerJedes}{für jedes}{tue}{Ende}

• \SetKwFor{FuerAlle}{für alle}{tue}{Ende}

• \SetKwFor{Solange}{solange}{tue}{Ende}

12.3 Portuguese keywords

• \Entrada{Entrada}
\Saida{Sáıda}
\Dados{Dados}
\Resultado{Resultado}

• \Ate

\KwRetorna{[val]}
\Retorna{[val]}

• \Iniciob{inside block}

• \eSe{condition}{then block}{else block}
\Se{condition}{then block}
\uSe{condition}{then block without end}
\lSe{condition}{then’s line text}
\Senao{else block}
\uSenao{else block without else}
\lSenao{else’s line text}
\SenaoSe{condition}{elseif block}
\uSenaoSe{condition}{elseif block without end}
\lSenaoSe{condition}{elseif’s line text}

• \Selec{condition}{Switch block}
\Caso{a case}{case block}
\uCaso{a case}{case block without end}
\lCaso{a case}{case’s line}
\Outro{otherwise block}
\lOutro{otherwise’s line}

• \Para{condition}{text loop}
\lPara{condition}{line text loop}

• \ParaPar{condition}{text loop}
\lParaPar{condition}{line text loop}

43

• \ParaCada{condition}{text loop}
\lParaCada{condition}{line text loop}

• \ParaTodo{condition}{text loop}
\lParaTodo{condition}{line text loop}

• \Enqto{stop condition}{text loop}
\lEnqto{stop condition}{text loop}

• \Repita{stop condition}{text loop}
\lRepita{stop condition}{line of the loop}

Here we describe how they are obtained:

1. \SetKwInput{Entrada}{Entrada}
\SetKwInput{Saida}{Saı́da}
\SetKwInput{Dados}{Dados}
\SetKwInput{Resultado}{Resultado}

2. \SetKw{Ate}{até} \SetKw{KwRetorna}{retorna}
\SetKw{Retorna}{retorna}

3. \SetKwBlock{Inicio}{inı́cio}{fim}

4. \SetKwIF{Se}{SenaoSe}{Senao}{se}{ent~ao}{sen~ao se}{sen~ao}{fim se}

5. \SetKwSwitch{Selec}{Caso}{Outro}{selecione}{faça}{caso}{sen~ao}{fim caso}fim selec

6. \SetKwFor{Para}{para}{faça}{fim para}

7. \SetKwFor{ParaPar}{para}{faça em paralelo}{fim para}

8. \SetKwFor{ParaCada}{para cada}{faça}{fim para cada}

9. \SetKwFor{ParaTodo}{para todo}{faça}{fim para todo}

10. \SetKwFor{Enqto}{enquanto}{faça}{fim enqto}

11. \SetKwRepeat{Repita}{repita}{até}

12.4 Italian keywords

• \KwIng{Ingresso}
\KwUsc{Uscita}
\KwDati{Dati}
\KwRisult{Risultato}

• \KwA

\KwRitorna{ritorna}
\Ritorna{ritorna}

• \Inizio{inside block}

• \Ripeti{stop condition}{text loop}
\lRipeti{stop condition}{line of the loop}

44

• \eSea{condition}{then block}{else block}
\{condition}{then block}
\uSea{condition}{then block without end}
\lSea{condition}{then’s line text}
\AltSe{else block}
\uAltSe{else block without else}
\lAltSe{else’s line text}
\Altrimenti{condition}{elseif block}
\uAltrimenti{condition}{elseif block without end}
\lAltrimenti{condition}{elseif’s line text}

• \Switch{condition}{Switch block}
\Case{a case}{case block}
\uCase{a case}{case block without end}
\lCase{a case}{case’s line}
\Other{otherwise block}
\lOther{otherwise’s line}

• \Per{condition}{text loop}
\lPer{condition}{line text loop}

• \PerPar{condition}{text loop}
\lPerPar{condition}{line text loop}

• \PerCiascun{condition}{text loop}
\lPerCiascun{condition}{line text loop}

• \PerTutti{condition}{text loop}
\lPerTutti{condition}{line text loop}

• \Finche{stop condition}{text loop}
\lFinche{stop condition}{text loop}

Here we describe how they are obtained:

1. \SetKwInput{KwIng}{Ingresso}

2. \SetKwInput{KwUsc}{Uscita}

3. \SetKwInput{KwDati}{Dati}

4. \SetKwInput{KwRisult}{Risultato}

5. \SetKw{KwA}{a}

6. \SetKw{KwRitorna}{ritorna}

7. \SetKw{Ritorna}{ritorna}

8. \SetKwBlock{Inizio}{inizio}{fine}

9. \SetKwRepeat{Ripeti}{ripeti}{finch}

45

10. \SetKwIF{Sea}{AltSe}{Altrimenti}{se}{allora}{altrimenti se}{allora}{fine se}

11. \SetKwSwitch{Switch}{Case}{Other}{switch}{do}{case}{otherwise}{endcase}endsw

12. \SetKwFor{Per}{per}{fai}{fine per}

13. \SetKwFor{PerPar}{per}{fai in parallelo}{fine per}

14. \SetKwFor{PerCiascun}{per ciascun}{fai}{fine per ciascun}

15. \SetKwFor{PerTutti}{per tutti i}{fai}{fine per tutti}

16. \SetKwFor{Finche}{finch}{fai}{fine finch}

12.5 Some Czech keywords

Here are some czech keywords, please feel free to send me the others.

• \Vst

• \Vyst

• \Vysl

How they are obtained:

1. \SetKwInput{Vst}Vstup

2. \SetKwInput{Vyst}Výstup

3. \SetKwInput{Vysl}Výsledek

13 Known bugs

• no more known bugs actually; if you find one, please send it to me.

46

Release notes

% - January 6 2013 - revision 5.0

% * CHANGE: SetKwSwith takes now 9 args: 9th arg is the same as

% previous 8th arg (’end of switch’ keyword). New 8th arg is

% ’end of case’ keyword. This is due to change of release

% 3.2 which introduce end after case block... as I never

% test with longend option, I never see that the ’end

% switch’ used for case was not good.

% * CHANGE: when no end keyword is defined in a block macro, then

% algorithm2e does no more try to print it. So even with lined or noline

% option, no empty line is printed (before: a blank end was

% printed, so a blank line appeared)

% * Internal Change: add some internal function to improve readibility

% (thanks to Philip K. F. H\lzenspies)

% * ADD: Block markers.

% You can now ask package to put begin and end keywords automatically at begin

% and end of blocks, it means each group of commands shifted and enclosed in

% braces.

% This is tricky to use but, combined with \SetStartEndCondition and

% redefinition of keywords, you should be abble to simulate any syntax. See

% examples in documentation where a generic example is derived in pseudo-code,

% python and C by keeping code and changing only style using block markers

% macros, \SetStartEndCondition and some redefinition of keywords.

% These new block markers macros are:

% - \AlgoDisplayBlockMarkers and \AlgoDontDisplayBlockMarkers

% - \SetAlgoBlockMarkers{begin marker}{end marker}

% - \BlockMarkersSty{text} and \SetBlockMarkersSty

% Note that a new option has also been added: displayblockmarkers

% * ADD: \leIf macro automatically defined by \SetKw: allow to define

% an if-then-else on a single line.

% * ADD: new macro \SetStartEndCondition{typo1}{typo2}{typo3} which

% sets typo around condition in For, If, Switch, Case and

% Repeat macros. First two are used around For, If, Swith

% conditions, First and third are used for Case and Repeat

% condition. Default definition is \SetStartEndCondition{ }{ }{}.

% A common alternative is \SetStartEndCondition{ (}{) }{)}

% Can also be used to remove space around condition, for

% example if you want python style commands:

% \SetStartEndCondition{ }{}{} and \SetKwFor{For}{for}{:}{}

% * ADD: new environment algomathdisplay which allow display math (like inside \[\] or $$ $$)

% handling end line and line number

% * ADD: new command \SetKwProg{Env}{Title}{is}{end} which defines a macro

% \Env{args}{text}. Env is a block with ’Title’ (in \CapSty) at the beginning

% followed by args followed by ’is’ then ’text’ is put below inside a block ended

% by ’end’. If no ’end’ is specified, nothing is written (no

% blank line is inserted). Useful to typeset function or prog for example:

% \SetKwProg{Fn}{Function}{is}{end} makes \Fn{afunc(i: int) : int}{return 0\;}

% writes:

% Function afunc(i: int) : int is

% | return 0;

% end

% or \SetKwProg{Def}{def}{:}{} makes \Def{afunc(i: int)}{return 0\;} writes:

% def afunc(i: int):

47

% | return 0

% Tip: combine it with \SetKwFunction to write recursive function algorithm. With

% example above, you could define \SetKwFunction{\Afunc}{afunc} and then write:

% Def{\Afunc{i:int}{\eIf{i>0}{\KwRet \Afunc{i-1}}{\KwRet 0\;}} that writes:

% def afunc(i: int):

% | if(i>0):

% | return afunc(i-1)

% | else:

% | return 0

% with appropriate typo.

% * ADD: option croatian: croation keywords (thanks to Ivan Gavran)

% * ADD: option ngerman: same as german option but so can be used with global option ngerman

% of babel

% * ADD: option spanish: Spanish support (thanks to Mario Abarca)

% * ADD: unterminated block: useful to add part separator that doesn’t necessary need an end

% keyword.

% Designed on the pattern of unterminated if (see \uIf macro) allowing to

% add a block that is not terminated by a keyword. Such block are defined in the same

% time as a block is defined by adding a macro beginning with u. So, for example,

% predefined \SetKwBlock{Begin}{begin}{end} defines now two commands:

% - \Begin{} as previously which print a begin - end block

% - \uBegin{} that defines a begin only block

% * FIX: dotocloa option which was broken

% * FIX: uIf and uCase didn’t have same behavior when used with

% noline, vlined or lined option. This is fixed. Side effect: no empty

% line after an uIf or uCase when used with options lined or vlined

% * FIX: a bug with Repeat Until command when use with side comment on Until

% * FIX: a bug with side text -- text put into () -- of command macro (SetKwIf and so on)

% which was always setting a ’;’ even after a \DontPrintSemicolon

% * FIX: a bug with hyperref and chapter definition (thanks to Hubert Meier)

% * FIX: bugs with l macro and side comment

% * FIX: revision number

% * FIX: fix non ascii character (utf8 not yet recognized by all latex engine)

% * FIX: fnum@algocf had an useless parameter which sometimes broke expansion and output an error

% * FIX: works now with multicol package

48

List of Algorithms

1 How to write algorithms . 4
2 disjoint decomposition . 5
3 IntervalRestriction . 7
4 Generic example with most classical expressions derived in pseudo-code 10
5 Generic example in pseudo-code with begin-end block set 12
6 Generic example in python-style like syntax . 13
7 Generic example in c-style like syntax . 14
8 Generic example in c-style like syntax with compact block 15

49

	Introduction
	How to use it: abstract
	Two more detailed examples
	Algorithm disjoint decomposition
	Algorithm: IntervalRestriction

	Genericity and example of languages
	Compatibility issues
	Environments defined in the package
	The options of the package
	language option
	compatibility issue
	environment display and use
	boxed, ruled, plain environment
	algorithm numbering
	figure and toc

	code typesetting
	blocks display
	end keywords
	comments
	lines numbers
	title of algorithms

	Typesetting
	Commands provided with the package
	global code typesetting commands
	algorithm environment, caption, list of algorithms, ...
	caption, title and changind reference of algorithms
	setting style and layout of algorithm, caption and title

	line numbering
	labelling and numbering lines
	setting style of lines numbers

	math display
	standard styles
	standard font shapes and styles
	caption and title font style
	setting font standard font shapes and styles
	setting caption and title font style

	controlling the layout of algorithms
	comments

	The predefined language keywords
	Input, output macros...
	basic keywords and blocks
	comments
	if-then-else macros
	multiple condition selection:
	loops with "end condition" test at the beginning
	loops with "end condition" test at the end
	how default keywords are obtained

	To define your own language keywords
	to define Input, output macros...
	to define basic keywords or blocks
	to define keywords as function
	to define comments
	to define if-then-else macros
	to define multiple condition selection:
	to define loops with "end condition" test at the beginning
	to define loops with "end condition" test at the end

	Other language predefined keywords
	french keywords
	German keywords
	Portuguese keywords
	Italian keywords
	Some Czech keywords

	Known bugs

