
The amsgen package

American Mathematical Society
Michael Downes

Version 2.0, 1999/11/30

1 Introduction
This is an internal package for storing common functions that are shared by
more than one package in the AMS-LATEX distribution. Some of these might
eventually make it into the LATEX kernel.

Standard package info. Using \ProvidesFile rather than \ProvidesPackage

because the latter, when input by, e.g, amsbook, results in LaTeX warning:

You have requested document class ‘amsbook’, but the document class

provides ‘amsgen’.

\NeedsTeXFormat{LaTeX2e}% LaTeX 2.09 can’t be used (nor non-LaTeX)

[1994/12/01]% LaTeX date must December 1994 or later

\ProvidesFile{amsgen.sty}[1999/11/30 v2.0]

2 Implementation
Some general macros shared by amsart.dtx, amsmath.dtx, amsfonts.dtx, . . .

\@saveprimitive The amsmath package redefines a number of TEX primitives. In case some pre-
ceding package also decided to redefine one of those same primitives, we had
better do some checking to make sure that we are able to save the primitive
meaning for internal use. This is handled by the \@saveprimitive function.
We follow the example of \@@input where the primitive meaning is stored in an
internal control sequence with a @@ prefix. Primitive control sequences can be
distinguished by the fact that \string and \meaning return the same informa-
tion.

\providecommand{\@saveprimitive}[2]{\begingroup\escapechar‘\\\relax

\edef\@tempa{\string#1}\edef\@tempb{\meaning#1}%

\ifx\@tempa\@tempb \global\let#2#1%

\else

Check to see if #2 was already given the desired primitive meaning somewhere
else.

\edef\@tempb{\meaning#2}%

\ifx\@tempa\@tempb

\else

\@latex@error{Unable to properly define \string#2; primitive

1

2 THE AMSGEN PACKAGE

\noexpand#1no longer primitive}\@eha

\fi

\fi

\endgroup}

\@xp

\@nx

Shorthands for long command names.

\let\@xp=\expandafter

\let\@nx=\noexpand

\@emptytoks A token register companion for \@empty. Saves a little main mem and probably
makes initializations such as \toks@{} run faster too.

\newtoks\@emptytoks

\@oparg Use of \@oparg simplifies some constructions where a macro takes an optional
argument in square brackets. We can’t use \newcommand here because this func-
tion might be previously defined by the amsmath package in a loading sequence
such as

\usepackage{amsmath,amsthm}

\def\@oparg#1[#2]{\@ifnextchar[{#1}{#1[#2]}}

\@ifempty

\@ifnotempty

\@ifnotempty and \@ifempty use category 11 @ characters to test whether
the argument is empty or not, since these are highly unlikely to occur in the
argument. As with \@oparg, there is a possibility that these commands were
defined previously in amsmath.sty.

\long\def\@ifempty#1{\@xifempty#1@@..\@nil}

\long\def\@xifempty#1#2@#3#4#5\@nil{%

\ifx#3#4\@xp\@firstoftwo\else\@xp\@secondoftwo\fi}

\@ifnotempty is a shorthand that makes code read better when no action is
needed in the empty case. At a cost of double argument-reading—so for often-
executed code, avoiding \@ifnotempty might be wise.

\long\def\@ifnotempty#1{\@ifempty{#1}{}}

Some abbreviations to conserve token mem.

\def\FN@{\futurelet\@let@token}

\def\DN@{\def\next@}

\def\RIfM@{\relax\ifmmode}

\def\setboxz@h{\setbox\z@\hbox}

\def\wdz@{\wd\z@}

\def\boxz@{\box\z@}

\def\relaxnext@{\let\@let@token\relax}

\new@ifnextchar This macro is a new version of LATEX’s \@ifnextchar, macro that does not skip
over spaces.

\long\def\new@ifnextchar#1#2#3{%

2. IMPLEMENTATION 3

By including the space after the equals sign, we make it possible for \new@ifnextchar
to do look-ahead for any token, including a space!

\let\reserved@d= #1%

\def\reserved@a{#2}\def\reserved@b{#3}%

\futurelet\@let@token\new@ifnch

}

%

\def\new@ifnch{%

\ifx\@let@token\reserved@d \let\reserved@b\reserved@a \fi

\reserved@b

}

\@ifstar There will essentially never be a space before the *, so using \@ifnextchar is
unnecessarily slow.

\def\@ifstar#1#2{\new@ifnextchar *{\def\reserved@a*{#1}\reserved@a}{#2}}

The hook \every@size was changed to \every@math@size in the December
1994 release of LATEX and its calling procedures changed. If \every@math@size
is undefined it means the user has an older version of LATEX so we had better
define it and patch a couple of functions (\glb@settings and \set@fontsize).

\@ifundefined{every@math@size}{%

Reuse the same token register; since it was never used except for the purposes
that are affected below, this is OK.

\let\every@math@size=\every@size

\def\glb@settings{%

\expandafter\ifx\csname S@\f@size\endcsname\relax

\calculate@math@sizes

\fi

\csname S@\f@size\endcsname

\ifmath@fonts

% \ifnum \tracingfonts>\tw@

% \@font@info{Setting up math fonts for

% \f@size/\f@baselineskip}\fi

\begingroup

\escapechar\m@ne

\csname mv@\math@version \endcsname

\globaldefs\@ne

\let \glb@currsize \f@size

\math@fonts

\endgroup

\the\every@math@size

\else

% \ifnum \tracingfonts>\tw@

% \@font@info{No math setup for \f@size/\f@baselineskip}%

% \fi

\fi

}

4 THE AMSGEN PACKAGE

Remove \the\every@size from \size@update.

\def\set@fontsize#1#2#3{%

\@defaultunits\@tempdimb#2pt\relax\@nnil

\edef\f@size{\strip@pt\@tempdimb}%

\@defaultunits\@tempskipa#3pt\relax\@nnil

\edef\f@baselineskip{\the\@tempskipa}%

\edef\f@linespread{#1}%

\let\baselinestretch\f@linespread

\def\size@update{%

\baselineskip\f@baselineskip\relax

\baselineskip\f@linespread\baselineskip

\normalbaselineskip\baselineskip

\setbox\strutbox\hbox{%

\vrule\@height.7\baselineskip

\@depth.3\baselineskip

\@width\z@}%

%%% \the\every@size

\let\size@update\relax}%

}

}{}% end \@ifundefined test

\ex@ The \ex@ variable provides a small unit of space for use in math-mode con-
structions, that varies according to the current type size. For example, the \pmb
command uses \ex@ units. Since a macro or mu unit solution for the 〈dimen〉
\ex@ won’t work without changing a lot of current code in the amsmath package,
we set \ex@ through the \every@math@size hook. The value of \ex@ is scaled
nonlinearly in a range of roughly 0.5pt to 1.5pt, by the function \compute@ex@.

\newdimen\ex@

\addto@hook\every@math@size{\compute@ex@}

\compute@ex@ computes \ex@ as a nonlinear scaling from 10pt to current
font size (\f@size). Using .97 as the multiplier makes 1 ex@ ≈ .9pt when the
current type size is 8pt and 1 ex@ ≈ 1.1pt when the current type size is 12pt.

The formula is essentially

1pt± (1pt− (.97)b|10−n|c)

where n = current type size, but adjusted to differentiate half-point sizes as
well as whole point sizes, and there is a cutoff for extraordinarily large values
of \f@size (> 20pt) so that the value of \ex@ never exceeds 1.5pt.

\def\compute@ex@{%

\begingroup

\dimen@-\f@size\p@

\ifdim\dimen@<-20\p@

Never make \ex@ larger than 1.5pt.

\global\ex@ 1.5\p@

\else

2. IMPLEMENTATION 5

Adjust by the reference size and multiply by 2 to allow for half-point sizes.

\advance\dimen@10\p@ \multiply\dimen@\tw@

Save information about the current sign of \dimen@.

\edef\@tempa{\ifdim\dimen@>\z@ -\fi}%

Get the absolute value of \dimen@.

\dimen@ \ifdim\dimen@<\z@ -\fi \dimen@

\advance\dimen@-\@m sp % fudge factor

Here we use \vfuzz merely as a convenient scratch register

\vfuzz\p@

Multiply in a loop.

\def\do{\ifdim\dimen@>\z@

\vfuzz=.97\vfuzz

\advance\dimen@ -\p@

%\message{\vfuzz: \the\vfuzz, \dimen@: \the\dimen@}%

\@xp\do \fi}%

\do

\dimen@\p@ \advance\dimen@-\vfuzz

\global\ex@\p@

\global\advance\ex@ \@tempa\dimen@

\fi

\endgroup

%\typeout{\string\f@size: \f@size}\showthe\ex@

}

Tests of the \compute@ex@ function yield the following results:

\f@size \ex@ \f@size \ex@

10 1.0pt 9 0.94089pt
11 1.05911pt 8.7 0.91266pt
12 1.11473pt 8.5 0.91266pt

14.4 1.23982pt 8.4 0.88527pt
17.28 1.36684pt 8 0.88527pt
20.74 1.5pt 7 0.83293pt
19.5 1.4395pt 6 0.78369pt

5 0.73737pt
1 0.57785pt

\@addpunct Use of the \@addpunct function allows ending punctuation in section headings
and elsewhere to be intelligently omitted when punctuation is already present.

\def\@addpunct#1{\ifnum\spacefactor>\@m \else#1\fi}

\frenchspacing Change \frenchspacing to ensure that \@addpunct will continue to work prop-
erly even when ‘french’ spacing is in effect.

\def\frenchspacing{\sfcode‘\.1006\sfcode‘\?1005\sfcode‘\!1004%

\sfcode‘\:1003\sfcode‘\;1002\sfcode‘\,1001 }

6 THE AMSGEN PACKAGE

2.1 Miscellaneous
\def\nomath@env{\@amsmath@err{%

\string\begin{\@currenvir} allowed only in paragraph mode%

}\@ehb% "You’ve lost some text"

}

A trade-off between main memory space and hash size; using \Invalid@@ saves
14 bytes of main memory for each use of \Invalid@, at the cost of one control
sequence name. \Invalid@ is currently used about five times and \Invalid@@

is used by itself in some other instances, which means that it saves us more
memory than \FN@, \RIfM@, and some of the other abbreviations above.

\def\Invalid@@{Invalid use of \string}

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput

