The cases package*

Donald Arseneau asnd@triumf.ca

May 2002

Copyright © 1993, 1994, 1995, 2000, 2002 by Donald Arseneau, asnd@triumf.ca. These macros may be freely transmitted, reproduced, or modified provided that this notice is left intact. Sub-equation numbering is based on subeqn.sty by Stephen Gildea; most of the rest is based on IAT_EX 's \equatrambda equation the Large by Leslie Lamport and the IAT_EX 's team.

* * *

This provides a LAT_EX environment {numcases} to produce multi-case equations with a separate equation number for each case. There is also {subnumcases} which numbers each case with the overall equation number plus a letter [8a, 8b, etc.]. The syntax is

```
\begin{numcases}{left_side}
  case_1 & explanation_1 \\
  case_2 & explanation_2 \\
    ...
    case_n & explanation_n
\end{numcases}
```

Each $\langle case \rangle$ is a math formula, and each $\langle explanation \rangle$ is a piece of lr mode text (which may contain math mode in $\langle (\ldots \rangle)$ or \ldots). The explanations are optional. Equation numbers are inserted automatically, just as for the eqnarray environment. In particular, the \nonumber command suppresses an equation number and the \label command allows reference to a particular case. In a subnumcases environment, a \label in the $\langle left_side \rangle$ of the equation gives the overall equation number, without any letter.

To use this package, include "\usepackage{cases}" after "\documentclass". You may also specify "\usepackage[subnum]{cases}" to force *all* numcases environments to be treated as subnumcases.

^{*}This manual corresponds to cases v2.5, dated May 2002.

Question: Is there a {numcases*} environment for unnumbered cases? Answer: There is a {cases} environment in \mathcal{AMS} -LATEX, but it is just as convenient to stick with the canonical LATEX array:

```
\[ left side = \left\{ \begin{array}...\end{array} \right. \]
```

Speaking of $\mathcal{A}_{\mathcal{M}}S$ -math, they use an entirely different system of equation numbering, and this package uses ordinary \mathbb{I}_{FX} numbering.

* * *

A simple example is:

\begin{numcases}{|x|=}
 x, & for \$x \geq 0\$\\
 -x, & for \$x < 0\$
\end{numcases}</pre>

Giving:

$$|x| = \begin{cases} x, & \text{for } x \ge 0 \\ x = 0 \end{cases}$$
(1)

$$\int -x, \quad \text{for } x < 0 \tag{2}$$

Another example is calculating the square root of c + id. First compute

 $\int 0$

$$c = d = 0 \tag{3a}$$

$$w \equiv \begin{cases} \sqrt{|c|} \sqrt{\frac{1 + \sqrt{1 + (d/c)^2}}{2}} & |c| \ge |d| \end{cases}$$
(3b)

$$\sqrt{|d|} \sqrt{\frac{|c/d| + \sqrt{1 + (c/d)^2}}{2}} \qquad |c| < |d|$$
(3c)

Then, using w from eq. (3), the square root is

 $\int 0$

$$w = 0 \text{ (case 3a)} \tag{4a}$$

$$w + i\frac{d}{2w} \qquad w \neq 0, \ c \ge 0 \tag{4b}$$

$$\sqrt{c+id} = \begin{cases} \frac{|d|}{2w} + iw & w \neq 0, \ c < 0, \ d \ge 0 \end{cases}$$
 (4c)

$$\left(\begin{array}{cc} \frac{|d|}{2w} - iw \qquad w \neq 0, \, c < 0, \, d < 0 \end{array}\right) \tag{4d}$$

This was produced by: