The cases package＊

Donald Arseneau
asnd＠triumf．ca

May 2002

Copyright © 1993，1994，1995，2000， 2002 by Donald Arseneau，asnd＠triumf．ca．These macros may be freely transmitted，reproduced，or modified provided that this notice is left intact．Sub－equation numbering is based on subeqn．sty by Stephen Gildea；most of the rest is based on $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$＇s \eqnarray by Leslie Lamport and the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 3$ team．

This provides a ${ }^{A} T_{E} \mathrm{X}$ environment \｛numcases\} to produce multi-case equations with a separate equation number for each case．There is also \｛subnumcases\} which numbers each case with the overall equation number plus a letter［8a，8b，etc．］．The syntax is

```
\begin{numcases}{left_side}
    case_1 & explanation_1 \\
    case_2 & explanation_2 \\
    case_n & explanation_n
\end{numcases}
```

Each (\langle\)case\rangleisamathformula，andeach〈explanation〉isapieceoflrmodetext（whichmaycontainmathmodein$\backslash(\ldots\backslash)or\$\ldots\$$）．Theexplanationsareoptional．Equationnumbersareinsertedautomatically，justasfortheeqnarrayenvironment．Inparticular，the\nonumbercommandsuppressesanequationnumberandthe\labelcommandallowsreferencetoaparticularcase．Inasubnumcasesenviron－ment，a\labelinthe〈left＿side〉oftheequationgivestheoverallequationnumber，withoutanyletter．Tousethispackage，include＂\usepackage\｛cases\}"after"\documentclass".Youmayalsospecify＂\usepackage［subnum］\｛cases\}"toforceallnumcasesenvironmentstobetreatedassubnumcases．undefined

[^0]Question: Is there a \{numcases*\} environment for unnumbered cases?
Answer: There is a \{cases\} environment in $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, but it is just as convenient to stick with the canonical $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ array:

```
\[ left side = \left\{ \begin{array}...\end{array} \right. \]
```

Speaking of $\mathcal{A} \mathcal{M} \mathcal{S}$-math, they use an entirely different system of equation numbering, and this package uses ordinary $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ numbering.

A simple example is:
\begin\{numcases\}\{|x|=\} }
$x, \&$ for $\$ x$ lgeq $0 \$ \backslash \backslash$
-x, \& for $\$ \mathrm{x}<0 \$$
\end\{numcases\} }
Giving:

$$
|x|= \begin{cases}x, & \text { for } x \geq 0 \tag{1}\\ -x, & \text { for } x<0\end{cases}
$$

Another example is calculating the square root of $c+i d$. First compute

$$
w \equiv \begin{cases}0 & c=d=0 \tag{3a}\\ \sqrt{|c|} \sqrt{\frac{1+\sqrt{1+(d / c)^{2}}}{2}} & |c| \geq|d| \\ \sqrt{|d|} \sqrt{\frac{|c / d|+\sqrt{1+(c / d)^{2}}}{2}} & |c|<|d|\end{cases}
$$

Then, using w from eq. (3), the square root is

$$
\sqrt{c+i d}= \begin{cases}0 & w=0(c a s e \tag{4a}\\ w+i \frac{d}{2 w} & w \neq 0, c \geq 0 \\ \frac{|d|}{2 w}+i w & w \neq 0, c<0, d \geq 0 \\ \frac{|d|}{2 w}-i w & w \neq 0, c<0, d<0\end{cases}
$$

This was produced by:

```
Another example is calculating the square root of $c+id$. First compute
\begin{subnumcases}{\label{w} w\equiv}
    0 & $c = d = 0$\label{wzero}\\
\sqrt{|c|}\,\sqrt{\frac{1 + \sqrt{1+(d/c)~2}}{2}} & $|c| \geq |d|$ \\
\sqrt{|d|}\,\sqrt{\frac{|c/d| + \sqrt{1+(c/d)^2}}{2}} & $|c| < |d|$
\end{subnumcases}
Then, using $w$ from eq.~(\ref{w}), the square root is
\begin{subnumcases}{\sqrt{c+id}=}
0 & $W=0$ (case \ref{wzero})\\
w+i\frac{d}{2w} & $w \neq 0$, $c \geq 0$ \\
\frac{ld|}{2w} + iw & $w \neq 0$, $c < 0$, $d \geq 0$ \\
\frac{ld|}{2w} - iw & $w \neq 0$, $c < 0$, $d < 0$
\end{subnumcases}
```


[^0]: ＊This manual corresponds to cases v2．5，dated May 2002.

