
The keyval package∗

David Carlisle

2014/05/08

Abstract

A LATEX package implementing a system allowing the setting of param-
eters (or ‘named arguments’ with a ⟨key⟩ = ⟨value⟩ syntax.

Eg: \foo[height=3in, shadow = true]{bar}

This package implements a system of defining and using sets of parameters,
which are set using the syntax ⟨key⟩=⟨value⟩.

For each keyword in such a set, there exists a function which is called whenever
the parameter appears in a parameter list. For instance if the set dpc is to have
the keyword scale then I would define.
\define@key{dpc}{scale}{scale ({\tt\string#1})\\}

The first argument of \define@key is the set of keywords being used, the second
is the keyword, and the third is the function to call. This function will be given
as #1 the ⟨value⟩ specified by the user.

Normally it is an error to omit the ‘=⟨value⟩’ however if an optional ⟨value⟩ is
supplied when the keyword is defined, then just the keyword need be supplied.
\define@key{dpc}{clip}[true]{...}
For ‘clip’ you can go ‘clip = true’ or ‘clip = false’ or just ‘clip’, which is
the same as ‘clip = true’

To use these keywords, just call ‘\setkeys’ with a comma separated list of
settings, each of the form ⟨key⟩=⟨value⟩, or just ⟨key⟩. Any white space around
the ‘=’ and ‘,’ is ignored.

As the ⟨key⟩ is passed as a macro argument, if it consists entirely of a { }
group, the outer braces are stripped off. Thus ,key=foo, and ,key={foo}, are
equivalent. This fact enables one to ‘hide’ any commas or equals signs that must
appear in the value. i.e. in foo={1,2,3},bar=4, foo gets the value 1,2,3, the
comma after 1 does not terminate the keyval pair, as it is ‘hidden’ by the braces.

Empty entries, with nothing between the commas, are silently ignored. This
means that it is not an error to have a comma after the last term, or before the
first.

1 Example
We may extend the examples above to give a ‘fake’ graphics inclusion macro, with
a syntax similar to that used in the psfig macros.

\dpcgraphics has one optional argument which is passed through \setkeys,
and one mandatory argument, the filename. It actually just typesets its arguments,
for demonstration.

The declared keys are: scale, height, width, bb, and clip. Except for the
last, they must all be given a value if used.

Note how in the following, any white space arround = or , is ignored, as are the
‘empty’ arguments caused by extra commas. Note also that each macro receives
exactly the tokens that you specify as arguments, no premature expansion is done.

∗This file has version number v1.15, last revised 2014/05/08.

1

\def\dpcgraphics{\@ifnextchar[\@dpcgraphics{\@dpcgraphics[]}}
\def\@dpcgraphics[#1]#2{{\setkeys{dpc}{#1}INPUT: #2}}

\define@key{dpc}{scale}{scale ({\tt\string#1\relax})\\}
\define@key{dpc}{clip}[true]{clip ({\tt\string#1\relax})\\}

\def\scalemacro{9}
\dpcgraphics
[height =4in, ,

width = 3in,
scale = \scalemacro,
bb = 20 20 300 400 ,
clip,

]{aaa}

height (4in)
width (3in)
scale (\scalemacro)
bounding box (20 20 300 400)
clip (true)
INPUT: aaa

2 The Internal Interface
A declaration of the form:
\define@key{family}{key}{...}
Defines a macro \KV@prefix@key with one argument. When used in a keyval list,
the macro receives the value as its argument.

A declaration of the form:
\define@key{family}{key}[default]{...}
Defines a macro \KV@family@key as above, however it also defines the macro
\KV@family@key@default as a macro with no arguments, and definition
\KV@family@key{default}.

Thus if macros are defined using \define@key, the use of a key with no
value …,foo,… is always equivalent to the use of the key with some value,
…,foo=default,…. However a package writer may wish that the ‘default’ be-
haviour for some key is not directly equivalent to using that key with a value.
(In particular, as pointed out to me by Timothy Van Zandt, you may wish
to omit error checking on the default value as you know it is correct.) In
these cases one simply needs to define the two macros \KV@⟨family⟩@key and
\KV@⟨family⟩@key@default directly using \def (or \newcommand). I do not supply
a user interface for this type of definition, but it is supported in the sense that
I will try to ensure that any future upgrades of this package do not break styles
making use of these ‘low level’ definitions.

3 The Macros
From version 1.05, all ‘internal’ macros associated to keys have names of the form:
\KV@⟨family⟩@⟨key⟩ or \KV@⟨family⟩@⟨key⟩@⟨default⟩

1 ⟨*𝗉𝖺𝖼𝗄𝖺𝗀𝖾⟩

\setkeys The top level macro. #2 should be a comma separated values of the form ⟨key⟩ =
⟨value⟩ or just simply ⟨key⟩. The macro associated with this key in the ‘family’ #1
is called with argument ⟨value⟩. The second form is only allowed if the key was
declared with a default value.

2 \long\def\setkeys#1#2{%

Save the ‘family’ for later. Then begin acting on the comma separated list.
3 \def\KV@prefix{KV@#1@}%
4 \let\@tempc\relax
5 \KV@do#2,\relax,}

\KV@do Iterate down the list of comma separated argument pairs.
6 \long\def\KV@do#1,{%

2

7 \ifx\relax#1\@empty\else
8 \KV@split#1==\relax
9 \expandafter\KV@do\fi}

\KV@split Split up the keyword and value, and call the appropriate command. This macro
was slightly reorganised for version 1.04, after some suggestions from Timothy Van
Zandt.
10 \long\def\KV@split#1=#2=#3\relax{%
11 \KV@@sp@def\@tempa{#1}%
12 \ifx\@tempa\@empty\else
13 \expandafter\let\expandafter\@tempc
14 \csname\KV@prefix\@tempa\endcsname
15 \ifx\@tempc\relax
16 ⟨𝗉𝗅𝖺𝗂𝗇⟩ \KV@err
17 ⟨! 𝗉𝗅𝖺𝗂𝗇⟩ \KV@errx
18 {\@tempa\space undefined}%
19 \else
20 \ifx\@empty#3\@empty
21 \KV@default
22 \else
23 \KV@@sp@def\@tempb{#2}%
24 \expandafter\@tempc\expandafter{\@tempb}\relax
25 \fi
26 \fi
27 \fi}

\KV@default Run the default code, or raise an error.
28 \def\KV@default{%
29 \expandafter\let\expandafter\@tempb
30 \csname\KV@prefix\@tempa @default\endcsname
31 \ifx\@tempb\relax
32 \KV@err{No value specified for \@tempa}%
33 \else
34 \@tempb\relax
35 \fi}

\KV@err Error messages.
36 ⟨𝗉𝗅𝖺𝗂𝗇⟩\def\KV@err#1{\errmessage{key-val: #1}}
37 ⟨*! 𝗉𝗅𝖺𝗂𝗇⟩
38 \DeclareOption{unknownkeysallowed}{%
39 \def\KV@errx#1{\PackageInfo{keyval}{#1}}}
40 \DeclareOption{unknownkeyserror}{%
41 \def\KV@errx#1{\PackageError{keyval}{#1}\@ehc}}
42 \ExecuteOptions{unknownkeyserror}
43 \let\KV@err\KV@errx
44 \ProcessOptions
45 ⟨/! 𝗉𝗅𝖺𝗂𝗇⟩

\KV@@sp@def
\KV@@sp@b
\KV@@sp@c
\KV@@sp@d

\KV@@sp@def⟨cmd⟩⟨token list⟩ is like \def, except that a space token at the begin-
ning or end of ⟨token list⟩ is removed before making the assignment. ⟨token list⟩
may not contain the token \@nil, unless it is within a brace group. The names
of these commands were changed at version 1.05 to ensure that they do not clash
with ‘internal’ macros in a key family ‘sp’.

Since v1.10, # may appear in the second argument without it needing to be
doubled as ##. Also earlier versions would drop any initial brace group, so {abc}d
would incorrectly be treated as abcd. The current version only removes brace
groups that surround the entire value, so {abcd} is treated correctly as abcd. Prior
to v1.14, two levels of bracing are removed, if you require the entire argument to
be a single brace group, you had use {{{abcd}}}, fron v1.14 exactly one brace
grup is removed, so to make the entire value be a brace group you need {{abc}}.
46 \def\@tempa#1{%

3

47 \long\def\KV@@sp@def##1##2{%
48 \futurelet\KV@tempa\KV@@sp@d##2\@nil\@nil#1\@nil\relax##1}%

Early release removed initial space by having an ‘extra’ argument in \KV@@sp@b
but that removed too many braces, so now make \KV@@sp@b explicitly remove
a single space token. That unfortunately means we need the new \KV@@sp@d
command to add a space token if one was not there before.
49 \def\KV@@sp@d{%
50 \ifx\KV@tempa\@sptoken
51 \expandafter\KV@@sp@b
52 \else
53 \expandafter\KV@@sp@b\expandafter#1%
54 \fi}%

55 \long\def\KV@@sp@b#1##1 \@nil{\KV@@sp@c##1}%

56 ⟨𝗉𝗅𝖺𝗂𝗇⟩\def\@sptoken{#1}%

Make the above definitions, inserting the space token where needed.
57 }
58 \@tempa{ }

59 \long\def\KV@@sp@c#1\@nil#2\relax#3{\KV@toks@{#1}\edef#3{\the\KV@toks@}}

\KV@toks@ Macro register used above to prevent # doubling. Avoid uding one of the normal
scratch registers, as this code is not in a local group.
60 \newtoks\KV@toks@

\define@key Define the command associated to the key #2 in the family #1. First looks for a
default argument (the default value for the key)
61 \def\define@key#1#2{%
62 \@ifnextchar[{\KV@def{#1}{#2}}{\long\@namedef{KV@#1@#2}####1}}

\KV@def Make the definitions of the command, and the default value.
63 \def\KV@def#1#2[#3]{%
64 \long\@namedef{KV@#1@#2@default\expandafter}\expandafter
65 {\csname KV@#1@#2\endcsname{#3}}%
66 \long\@namedef{KV@#1@#2}##1}

67 ⟨/𝗉𝖺𝖼𝗄𝖺𝗀𝖾⟩

4

	1 Example
	2 The Internal Interface
	3 The Macros

