RUG LaTEX Course

Siep Kroonenberg

RUG LaTEX Course, version 1.04 July 13, 2014
Created for the Faculty of Economics and Business of the University of Groningen

Copyright © 2014 Siep Kroonenberg

Copying and distribution of this file, with or without modification, are permitted in any medium without royalty provided the copyright notice and this notice are preserved. This file is offered as-is, without any warranty.

Contents

Preface 3
1 Introduction 4
1.1 History 4
1.2 The $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{LaT} \mathrm{T}_{\mathrm{E}}$ ecosystem 4
1.3 Working with LaTEX 4
2 Getting started 6
2.1 First: let Windows display file extensions 6
2.2 Accessing RuG TEX Live 2013 7
2.3 TeXstudio 7
2.4 First document 8
2.5 Documentation 9
2.6 Practice files 9
3 Basics 10
3.1 Paragraphs 10
3.2 Comments 10
3.3 Control sequences and -characters 10
3.4 Grouping 11
3.5 Text formatting 11
3.6 Special characters 11
3.7 Lists: itemize, enumerate and description 12
3.8 LaTEX classes 13
3.9 Sectioning commands 13
3.10 Title 14
3.11 Footnotes and 'thanks' 14
3.12 Practice 15
4 Math 16
4.1 Amsmath 16
4.2 Math mode: Inline and display math 16
4.3 Mathematical notation 16
4.4 Finding symbols 17
4.5 Various constructs 17
4.6 Arrays/matrices 18
4.7 Multiline equations 19
4.8 Fonts in math 20
4.9 Macros 20
4.10 Practice 21
5 Tabulars 22
5.1 Basics 22
5.2 Partial rules 23
5.3 Multicolumn 23
5.4 Decimal alignment 23
5.5 Text columns 24
5.6 Floating tables 24
5.7 Shortcuts 24
5.8 Practice 25
6 Graphics for LaTEX 26
6.1 External graphics 26
6.2 Producers of graphic files 28
6.3 Including an external graphics file 28
6.4 Floating figures and tables 29
6.5 Practice documents for graphics and floats 30
7 Presentations 31
7.1 Alternatives 31
7.2 Getting started with Beamer 31
7.3 Slides are frames 31
7.4 Themes 32
7.5 Modes 32
7.6 What about sections? 33
7.7 Figures and tables 33
7.8 Practice 33
A Changing the appearance 34
A. 1 Empty lines instead of paragraph indentation 34
A. 2 Double-spacing 34
A. 3 Display math alignment 34
A. 4 Page dimensions 35
A. 5 Font size 35
A. 6 Fonts 35
B Language support 37
B. 1 Babel 37
B. 2 Non-western scripts with XeTeX and LuaTeX 37
C Bibliographic references 38
C. 1 The why and how of $\operatorname{BibT} T_{\mathrm{E}}$ 38
C. 2 nocite: entries without citations 39
C. 3 Bibliography styles: three generations 40
C. 4 Generating your own bibliography style with custom-bib/makebst 41
C. 5 The latest and greatest: biblatex 42
C. 6 The BibTEX database format 43
C. 7 BibTEX editors and bibliography managers 44
C. 8 Examples 44
C. 9 The url field 47
C. 10 Practice 48
C. 11 Troubleshooting 48
Documentation and online resources 50

Preface

This is the book accompanying a $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ course for first-year econometrics students at the Rijksuniversiteit Groningen. The aim of the course is to guide you through your first steps with $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$, with pointers to further $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ resources to expand your $\mathrm{La} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ skills.
Some topics are delegated to appendices because they did not fit in with the course. Consult them as needed. There is an accompanying downloadable zip file with sample code.
The first two chapters deal mainly with practicalities and are sometimes specific for our local installation: chapter 1 contains some hints for setting up your own $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ system, and chapter 2 introduces the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation of the Rijksuniversiteit Groningen.

The TeXstudio editor used in the course is free, cross-platform and has palettes of mathematical symbols. This last feature is useful for $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ beginners who have to typeset a lot of mathematics, or at least for their teacher. But most of this book is editor-agnostic, and the launcher, see below, makes it easy to switch editors.

The university installation and the $T_{E} X$ Live launcher

In case you want to know about our local setup: the university $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live installation resides on the network and is accessed via a launcher, which has a menu for the various components of the installation. Upon first use the launcher does some necessary initialization, such as adjusting the searchpath and setting up file associations. You can rerun this initializer at any time if something seems messed up.
The current incarnation of the launcher is written in a Windows-specific scripting language AutoIt. I am slowly rewriting it in C. In the new version, it will be possible to define the menu and other details in a configuration file, to make it easy to adapt the launcher to other setups. I hope to publish it eventually in some form.
The launcher replaces an earlier initialization script which created a menu and file associations, and added $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live to the user searchpath. It consisted of a batchfile invoking a Perl script with the built-in Perl of $\mathrm{TEX}_{\mathrm{E}}$ Live. A version is available at www.tug.org/texlive/ w32client.html.

Chapter 1

Introduction

This introduction to $\operatorname{LaT}_{\mathrm{E}} X$ is no more than that, an introduction. Hopefully, by the end of it you see the point of $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$, and are able to explore it further on your own.
This chapter gives a bit of background, which may help you understand the philosophy of $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$.

1.1 History

LaTEX is pretty old, and its roots are even older.
In 1977, Donald Knuth, a mathematician, started creating his typesetting system $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ as a tool for better typesetting, expecially of mathematics. The first version of $T_{E} X$ appeared in 1978. The second version, which was a complete rewrite, appeared in 1982.

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ system is based on a markup language. Contrary to html , another popular markup language, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is designed for precision typesetting of complex texts, and is also a macro language.
In the early 1980 Leslie Lamport provided a set of macros providing features such as automatic chapter- and section numbering, footnotes and automatic cross-referencing.
$\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ allowed authors to concentrate on the meaning and structure of documents, rather on appearance. This is called structural markup.

The $\mathrm{LaT}_{\mathrm{E}} X$ macros cover most uses of $\mathrm{T}_{\mathrm{E}} X$: besides articles, reports and books, also slides and letters are provided for. Most $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users started using the $\mathrm{LaT} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros for their documents, adding their own stuff as needed, rather than starting their own macro package from scratch.

1.2 The $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{La} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ ecosystem

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ caught on, and a large ecosystem grew up around it. Users around the world contributed macros, fonts, support for non-Western languages, manuals and utilities. The vast majority is free.

The CTAN archives are the main repository for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-related material, but it is likely that your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation already contains everything you need or provides an easy way to add it.

The sites of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user groups such as http://www.tug. org and http://www.ntg.nl/ host various mailing lists and have links to other $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ - and $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$-related sites. My own site http: / /tex. aanhet. net/rugtex/ is about the RuG $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation and also contains some useful links.

1.3 Working with LaTEX

$\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ is not a wysywyg wordprocessor. Preparing a document with $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ is a three-step cycle:
» Enter your text, with markup, in a text editor such as Notepad or TeXstudio or Emacs.
" 'Compile' your document, i.e. convert it to pdf; more on that later.
» Preview it in a pdf viewer such as Adobe Reader or SumatraPDF or the pdf viewer built into the editor, if there is one.
Below you see a marked-up source fragment at the left and two typeset results at the right:

1.1 Some mathematics

The econometric model is confronted with observed data and the parameters are estimated by econometric techniques, as shown in equation 1 below:

$$
\begin{equation*}
Y_{t}=G_{1}(Y, X, \hat{\Theta}, \hat{U}) \tag{1}
\end{equation*}
$$

1.1 Some mathematics. The econometric model is confronted with observed data and the parameters are estimated by econometric techniques, as shown in equation 1 below:

$$
\begin{equation*}
Y_{t}=G_{1}(Y, X, \hat{\Theta}, \hat{U}) \tag{1}
\end{equation*}
$$

The difference in appearance is entirely due to changes in the document header. LaTEX allows you to forget about layout and typography until you are ready for it.

Note also the automatic numbering and cross-referencing. This works as efficiently and reliably in this tiny sample as in a big tome.

1.3.1 Front end and back end

In the next chapter, we shall do the entire cycle: text entry, compilation and previewing from the $\mathrm{LaT}_{\mathrm{E}} X$ editor TeXstudio. The real work wil be done behind the scenes by the actual $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation, which is complex system of command-line programs, macros, fonts and data files.

There are several editors to choose from, most of which are free and some of which are included in our LaTEX system. You can use them interchangeably without fear of messing up your files.

There are also several options for the background $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation. The two major ones, $\mathrm{T}_{\mathrm{E}} X$ Live and MiKTEX, are also free. The RuG installation uses $\mathrm{T}_{\mathrm{E}} X$ Live, which is available for Windows, Mac OS and Unix/Linux. The other one, MiKTEX, is Windows-only. Both contain all the bits and pieces that you are likely to need, although $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live is a bit more comprehensive. They both include the TeXworks editor/front end, although this is not the editor we use for this course.

1.3.2 Installation on your laptop

For installation on your own laptop or computer, please refer to http://tex. aanhet.net/ rugtex/home_inst.html. It contains links to all the software from the university installation, excepting the launcher, and also discusses installation on Linux and Mac OS X.

Please do not install LaTE X while in class: a full install takes far too long.

Chapter 2

Getting started

2.1 First: let Windows display file extensions

If you work on a file somefile.tex, then $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is going to generate various auxiliary files such as somefile. aux and somefile.log. With the following steps you make sure that Windows displays the file extensions, so you can tell all these files apart:
» Windows XP/7

- Click on 'My Computer'
- Click on Tools / Folder Options. Windows 7: if you do not see Tools, hit the left Alt key first.
" Windows 8 (indicates the Windows- or logo key)
- Type ${ }^{[1}$-D for desktop mode
- Type III-E for File Explorer
- Click on the Options logo
" Select the View tab
» Uncheck 'Hide extensions for known filetypes'
" Click 'Apply to All Folders'
» Click OK

Figure 2.1. Letting Windows display file extensions

Figure 2.2. The $T_{E} X$ Live launcher

2.2 Accessing RuG TEX Live 2013

For a standard university UWP computer, you should have a menu item Start / RuG menu / Text Processing / TeX Live RuG 2013. For the new UWP2, this entry is under Start / Programs / Text Processing. This invokes the TEX Live Launcher, see Figure 2.2.

From this launcher you can start up your favorite $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ editor, consult documentation and do some maintenance. Please take a moment to browse the launcher menus.

The 'RuG TeX Live website' item in the Online menu points to the web pages for our $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation. There is also a page that explains how to install $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ at home, also for nonWindows platforms: http://tex.aanhet.net/rugtex/home_inst.html.
The button at the left, labeled '(La)TeX editor', invokes your selected default editor.
$\mathrm{LaT}_{\mathrm{E}} X$ files are plain text files. This means that you can view them in any editor, but you should edit them in an editor which adds no binary stuff. You can use a general programmers editor, but a dedicated $\mathrm{LaT}_{\mathrm{E}} X$ editor can give you a lot more help, as we shall see. The launcher offers you three choices: TeXstudio, TeXworks and TeXnicCenter, plus the option to select an editor of your own; see the radio buttons in the launcher. Here, we demonstrate TeXstudio.

2.3 TeXstudio

Figure 2.3 shows the TeXstudio edit screen. The editing area is surrounded by various toolbars, a structure view on the left and optionally a tabbed information area at the bottom.

This latter item is rather useful. If you do not see it, you can make it visible by clicking on

Figure 2.3. TeXstudio, a $\operatorname{LaT}_{E} X$ editor
the second-left item \square at the lower left corner of the editor window.
While you are at it, you can also right-click on an empty area of the toolbar or menu bar to get rid of some of the toolbar clutter; everything is already available via the menus.

Also look through the TeXstudio menus, in particular:
» The Tools menu and its Commands submenu for running $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ and various utilities; see section 2.4
» The LaTeX menu for inserting various $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ macros
» The Math menu for inserting LaTEX macros for math
You can also type $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ macros by hand once you know them.

2.4 First document

Create a new document by clicking on File / New and type the following code:

```
\documentclass{article}
\begin{document}
Hello, world!
\end{document}
```

This is a complete $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ document: setup is done in the preamble, i.e. the \documentclass line and anything else before \backslash begin\{document\}. In this case, we just specified that we wanted an article, rather than e.g. a book or a letter. Actual content goes between \begin\{document\} and \end\{document\}. }

2.4.1 Compiling

Save the document e.g. as $\mathrm{X}: \backslash$ latexdocs \backslash hello.tex. Then click the Build button (\boldsymbol{D}). If all is well, a pdf-preview window should pop up; see figure 2.4.

Also have a look at the message area below the editing area (figure 2.5). If there are problems or you are not getting the output you expect then you can inspect the Errors tab.

Figure 2.4. The built-in previewer of TeXstudio

You can read more about compiling in Section 3 of the online help: Help / User Manual.... It also explains what to do in case of errors.

Figure 2.5. Messages tab after a successful compilation

2.5 Documentation

Built-in help. The Help menu of TeXstudio provides both help for TeXstudio itself and a brief $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ reference.

The launcher Documentation- and Online menus contain shortcuts to several other useful manuals and online resources.

The LaTeX Introduction menu entry points to a book-length introduction which covers all the basics. It is also a nice demonstration of the bookmarking and hyperlinking that you get virtually for free with $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$, and which makes the pdf very convenient to consult on-screen. The next menu item, LaTeX Reference, is the full version of the built-in LaTEX reference.
The [UK $\left.\mathrm{T}_{\mathrm{E}} \mathrm{X}\right] F A Q$ is another useful resource.

2.5.1 The documentation list

A virtually complete list of documentation included with $\mathrm{T}_{\mathrm{E}} \mathrm{Live}$ is doc.html in the root of the installation. In the launcher documentation menu, this is All TeX Live documentation by package. We shall refer to this list as 'the documentation list'.

But you can also use the texdoc command-line utility or consult the documentation from the CTAN Catalogue.

Tip: view pdfs without their margins

For better use of your screen pixels, you may wish that your pdf viewer zoomed in on the printed part of the page. Several pdf viewers can do this automatically. In Adobe Reader, select View / Zoom / Fit Visible. In SumatraPDF, part of our TEX installation, select Zoom / Fit Content.

2.6 Practice files

This course comes with a zipfile practice.zip with some example .tex files, a subdirectory figures of graphic files for later in the course and a second subdirectory bibtex relating to bibliography management ${ }^{1}$.

Right-click the zip file after downloading, select 'Extract All...' and pick a suitable directory for unpacking, not some obscure directory for temporary files; see below.

Several chapters conclude with suggestions for practicing, which usually refer to files from this zipfile.

[^0]
Chapter 3

Basics

Keep The Not So Short Introduction handy; as mentioned above, it is in the launcher menu under Documentation.

Start a new $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ document as described in section 2.4, with content
\documentclass\{article\}
\begin\{document\} }
Hello, world!
Hello, world!
\end\{document\} }
You may already have guessed that macros start with \and that a parameter can be enclosed in braces \{ \}. A construct \begin\{something\}... \end\{something\} is called an environment. }

Now try out some of the syntax below on your new $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ document.

3.1 Paragraphs

You need to separate paragraphs with empty lines in the input file; a single linebreak is equivalent to a space.

```
A linebreak in the source
creates a space in the pdf output.
An empty line in the source ends a paragraph.
```

A linebreak in the source creates a space in the pdf output.
An empty line in the source ends a paragraph.

3.2 Comments

The percent character, \%, is the comment character: LaTEX ignores it and everything following it on the same line, including the linebreak itself.
one
\%ignore
tw\% one two
tw\%
。

3.3 Control sequences and -characters

$\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ commands often take the form of a backslash followed by a series of letters, e.g.
\backslash LaTeX

$$
\operatorname{LaT}_{E} X
$$

A control sequence swallows succeeding spaces, so you sometimes have to follow it with \{\} or ~:
\backslash LaTeX code
LaTEXcode
LaTE X code, $L^{2} T_{E} X$ code, $L a T_{E} X$.
\backslash LaTeX~code, \LaTeX\{\} code, \LaTeX.
Rendering control characters literally:

	function	render literally with
$\%$	comment character	$\backslash \%$
$\}$	parameter; grouping	$\backslash\{\backslash\}$
\backslash	starts control sequence	\backslash textbackslash
$\backslash \backslash$	newline (!)	

3.4 Grouping

A pair of braces can also localize the effect of a command:

```
x z {\footnotesize x z} x z
XZ Z z X Z
```


3.5 Text formatting

These commands work on all subsequent text within the current block:
normal \itshape italic \bfseries bolditalic
\upshape bold \mdseries normal
Argument form:
normal \textit\{italic\} \textbf\{bold\}
text italic bolditalic bold normal
normal italic bold

TeXstudio has buttons for bold B and italic I on the inner vertical toolbar.
These are the basic text formatting commands:

	'from now on'	argument form
italic	\itshape	\textit\{ ...\}
upright	\upshape	\textup\{...\}
bold	\bfseries	\textbf\{...\}
medium	\mdseries	\textmd\{...\}
monospaced	\ttfamily	\texttt\{...\}

Some people recommend \emph (emphasized) instead of \textit as being more in line with structural markup.

The classfile and stylefiles will take care of many changes in text attributes, e.g. in section heads and in bibliographies. Do not style these items manually, even though you have not yet learned how to adjust styling globally.

Predefined text sizes; note that some may come out the same:

\backslash tiny	\backslash normalsize	
\scriptsize		$\ L A R G E$
\footnotesize	\large	
\backslash small	\Large	¢nuee

Usually, the classfile will take care of required size changes.

3.6 Special characters

Here a short list of typographic characters and how you can create them in LaTEX even if you use only typewriter characters in your input:

	output	code
Single quotes	$\prime \prime$	$-'$
Double quotes	$" \prime$	$\cdots ' \prime$
Non-breaking space		\sim
Hyphen	-	-
En-dash	-	-
Em-dash	-	--
Accented characters	é	$\backslash ' e$
	ï	$\backslash " \backslash i$

Using accented input characters require an extra line
age[utf8]\{inputenc\}inthepreamble1:\usepackage[utf8]\{inputenc\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
" ä ï @ <" and ،" \"a\"\i{} \textcopyright{} << ", "ä ï © <" and" ä i © <"
```

This method does not cover all unicode characters, and if you type a lot of code then you may prefer control codes anyway.
For full unicode support, you should use the $\mathrm{XeT}_{\mathrm{E}} \mathrm{X}$ or LuaTEX engines; see appendix sections A.6.1 and B.2.

3.6.1 Hyphens and dashes

Please be aware that not every horizontal dash is the same. A few examples of proper use: En-dashes for ranges: 7--9 for ' $7-9$ ', or to set off - part of - a sentence.
Em-dashes also for setting off-part of-a sentence, but now without surrounding spaces ${ }^{2}$.
A plain hyphen '-' is appropriate for hyphenation and for compound words such as 'crossreferencing'.

3.7 Lists: itemize, enumerate and description

Itemize (unnumbered list):
\begin\{itemize\} }
- camel
- rabbit
\end\{itemize\} }
Enumerate (numbered list):
\(\backslash\) begin\{enumerate\}
- soup
- main course
- dessert
\end\{enumerate\} }

- camel
- rabbit

Lists can be nested:

1. latin1 is an alternative to utf8, but if we go beyond ASCII input at all, then let us do it right and adopt unicode.
2. or, better with thin spaces \backslash,

\backslash begin\{enumerate\}	1. soup
soup	
main course 2. main course	
\begin\{itemize\} }	- tortilla filled with meat and
tortilla filled with meat and vegetablesrefried beans	vegetables
\end\{itemize\} }	- refried beans
dessert	
\end\{enumerate\} }	3. dessert
Description lists:	
\backslash begin\{description\}	One This is a short term.
This is a short term.	
```\item[Quetzalquatl] Mexican god, about whom we could tell a lot if only we had the time and inclination. \end{description}```	Quetzalquatl Mexican god, about whom we could tell a lot if only we had the time and inclination.

1. soup
2. main course

- tortilla filled with meat and vegetables
- refried beans

3. dessert

One This is a short term.
Quetzalquatl Mexican god, about whom we could tell a lot if only we had the time and inclination.

Here, we see an example of optional parameters, which are enclosed in square brackets.

### 3.8 LaTEX classes

Each $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ document starts with a \documentclass line, which selects a class file. Class files define available features and a default look. Some important LaTEX document classes:

```
" article (no chapters)
" report
" book
```

The above classes are very similar in the features they support. You can add features or change the appearance by loading packages: ss[10pt,a4paper]\{article\}\usepackage[utf8]\{inputenc\}\usepackage\{amsmath\}\usepackage\{amsfonts\}\usepackage\{amssymb\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

### 3.9 Sectioning commands

The standard classes listed above have a predefined sectioning hierarchy: parts, chapters (not for articles), sections, subsections, subsubsections, paragraphs and subparagraphs.

All these commands all have an optional and a required parameter, e.g.

```
\section[Short title]{A very long and impossibly involved title,
which will never fit in a page header}
\subsection{A short enough title}
```

Sectioning titles may turn up in page headers or in an automatically generated table of contents. If a title isn't short and simple, you definitely should use an optional parameter which won't cause trouble when it is reused in page headers or in a table of contents.

[^1]
### 3.9.1 Bookmarks and clickable cross-references with hyperref

The hyperref package will create bookmarks from your sections, and also make all the cross-references in your pdf clickable. Add an option colorlinks if you do not like the boxes around links:
f\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

### 3.10 Title

Publications customarily start with some sort of title page or -block. $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ creates such a title with the \maketitle command. You should already have defined an author and title with corresponding commands.

The \author- and \title commands can be placed either in the preamble or in the body of the $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ source. The $\backslash$ maketitle command belongs in the body.

Here is an example of an article with a gecommand,atitleblock,atableofcontentsandsections:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\documentclass{article}
\usepackage{newpxtext,newpxmath} % palatino font
\begin{document}
\title{Title of article}
lauthor{My name}
\maketitle
\thispagestyle{empty}
\tableofcontents
\section{A section}\label{sec:ASection}
See section \ref{sec:ASection} on page
\pageref{sec:ASection}.
\subsection{A subsection}
That's all, folks!
\end{document}
```

Title of article
My name
June 17, 2014

Contents
1 A section 1
1.1 A subsection . . . . . . . . . . . . . 1

1 A section
See section 1 on page 1 .

### 1.1 A subsection

That's all, folks!

Notice the use of cross-referencing commands \label, \ref and \pageref.
Warning. Cross-references usually require more than one (pdf)LaTEX run before they are correctly resolved. This is also true for automatically generated text such as tables of contents. After each LaTEX run, be sure to check the errors tab below the editing area for errors and warnings.

### 3.11 Footnotes and 'thanks'

In the LaTEX source, footnotes are placed in the running text. The $\backslash$ footnote command generates both the mark in the running text and the footnote itself at the bottom. As with sectioning, footnotes are numbered automatically:

Here comes a footnote. $\backslash$ footnote $\{\%$
This is the footnote.\}
And some more text.

Here comes a footnote. ${ }^{1}$ And some more text.
${ }^{1}$ This is the footnote.

A special case is a footnote attached to the title or author of an article. Note that the footnote should be inside the title- or author parameter.

\title\{Sample title\thanks\{\%

Supported by a grant\}\}
\author\{A.U. Thor\thanks\{\%
And another grant\}\}

$\backslash$ maketitle

First line of regular text. $\backslash$ footnote\{ $\%$
With a regular footnote.\} And some more text.

# Sample title* 

A.U. Thor ${ }^{\dagger}$

June 17, 2014

First line of regular text. ${ }^{1}$ And some more text.
*Supported by a grant
${ }^{\dagger}$ And another grant
${ }^{1}$ With a regular footnote.

### 3.12 Practice

Start out with a new document, as described in section 2.4. Use this document to try out the code samples from this chapter.

If you feel ready to try bigger things, you can try to typeset some real text. If you have nothing suitable of your own, you can turn to Wikipedia articles such as http://en . wikipedia. org/wiki/Factors_of_production. You can copy-and-paste pieces of text from the web page to your own $\mathrm{LaT}_{\mathrm{E}} X$ document.
Try to recreate the structure, not the appearance, e.g. use sectioning commands instead of manually bolding headings, and let LaTEX create the table of contents. Also pay attention to proper quotes and typographic characters.
Consult basics_sample.tex from the practice zip (see section 2.6) as an example of a complete, structured $\mathrm{LaTE}_{\mathrm{E}}$ document.

## Chapter 4

## Math

### 4.1 Amsmath

Although you can do a lot of math typesetting with LaTEX alone, we shall assume that amsmath and related packages are loaded, e.g. with a command

```
\usepackage{amsmath,amsfonts,amssymb}
```

in the preamble, i.e. between \documentclass\{...\} and \begin\{document\}. }
For documentation, click in the launcher Documentation / AmsMath User Guide.

### 4.2 Math mode: Inline and display math

Math in running text is bracketed between $\$$ characters ${ }^{1}$ :

```
Simple bits of math in running text,
enclosed in \$ characters: x or
α or $\sum_i n_i$
```

Simple bits of math in running text, enclosed in $\$$ characters: $x$ or $\alpha$ or $\sum_{i} n_{i}$

Notice that ordinary letters are italicized in math mode.
More elaborate formulas are better typeset as display math, on a line by itself ${ }^{2}$. Notice the more spacious typesetting of indices in display math mode.
$\backslash\left[\mathrm{x}=\backslash\right.$ sum_\{i=0\}- ${ }^{-}$infty $\left.y_{-} \mathrm{i} \backslash\right]$

$$
x=\sum_{i=0}^{\infty} y_{i}
$$

Display math with automatic equation numbering:
\begin\{equation\} } $\\{\mathrm{x}=\backslash \text { sum_\{i=0\}^\infty y_i \label\{firstequation }\}} \\{\text { \end\{equation } \} } \\{\text { See equation } \backslash r e f\{\text { firstequation }\}} \end{array} \quad x=\sum_{i=0}^{\infty} y_{i}$

See equation \ref\{firstequation\}
on page \pageref\{firstequation\}.
See equation 4.1 on page 16.
This is yet another example of automatically generated numbers which can be used for cross-referencing.

### 4.3 Mathematical notation

Many symbols listed below can be entered via the TeXstudio interface, either via the Math menu or via the panel at the left. But you can also type the code directly.

[^2]2. Alternative codings: \begin\{displaymath\} ... \end\{displaymath\} and, only with the amsmath package: } \begin\{equation*\} ... \end\{equation*\}. }
}

### 4.3.1 Greek letters

lowercase: \$\alpha, \beta, \epsilon, \varepsilon, \gamma, \phi, \psi,
\xi, \pi, \sigma, \omega\$ <br>
uppercase: \$\Gamma, \Phi, \Psi, \Xi, $\backslash \mathrm{Pi}, \backslash$ Sigma, \Omega\$
lowercase: $\alpha, \beta, \epsilon, \varepsilon, \gamma, \phi, \psi, \xi, \pi, \sigma, \omega$ uppercase: $\Gamma, \Phi, \Psi, \Xi, \Pi, \Sigma, \Omega$

### 4.3.2 Mathematical accents

```
$x', \hat{a}, \acute{e}, \bar{\imath},
\vec{o},\dot{u},\\dot{v},
\vec{\dot{Y}}$
```



Note \imath for a dotless i, and the last example which stacks two accents on top of each other.

### 4.3.3 Various symbols

Arithmetic and relational operators

```
$\alpha = 0 - \gamma \times \zeta$\\
$x < y$ and $a > b$ \\
$u \leq v$ and $i \geq j$ \\
$\sigma \pm \tau$ and $\beta \sim \rho$
```

$$
\begin{aligned}
& \alpha=\theta-\gamma \times \zeta \\
& x<y \text { and } a>b \\
& u \leq v \text { and } i \geq j \\
& \sigma \pm \tau \text { and } \beta \sim \rho
\end{aligned}
$$

Arrows
\$\leftarrow, \Rightarrow,
\uparrow, \Downarrow,
\leftrightarrow,
$\leftarrow, \Rightarrow, \uparrow, \Downarrow, \leftrightarrow, \longleftrightarrow$
\longleftrightarrow\$

### 4.4 Finding symbols

Many symbols are already available via the TeXstudio interface. But for a very comprehensive list, consult the document 'Comprehensive Symbol list', which is part of the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live documentation. Search for 'comprehensive' in the documentation list (see 2.5.1).
Functions

Do not write $\$ 10 g 100=2 \$$ but $\backslash \backslash$
$\$ \backslash \log 100=2 \$ \backslash \backslash$
$\$ \backslash \ln 100=4.605 \$ \backslash \backslash$
$\$ \backslash \sin (45)=0.707 \$$

Do not write $\log 100=2$ but
$\log 100=2$
$\ln 100=4.605$
$\sin (45)=0.707$

### 4.5 Various constructs

For the samples below, we use display math, since many of them take up too much height to fit within a standard line of text. Note the use of braces $\{$ and $\}$ to collect several letters and symbols into one argument.
Subscripts and superscripts
$\backslash\left[x_{-} i, x_{-}\{i+1\}, a^{\wedge} 2, b^{\wedge}\{x+y\} \backslash\right]$

$$
x_{i}, x_{i+1}, a^{2}, b^{x+y}
$$



Figure 4.1. Quick Array wizard

Roots, without and with optional parameter
$\backslash[\backslash \operatorname{sqrt}\{\mathrm{x}+\mathrm{y}\}, \backslash \operatorname{sqrt}[\mathrm{n}]\{2\} \backslash] \quad \sqrt{x+y}, \sqrt[n]{2}$
Two styles of fractions; regular text within display math

$$
x/y \text\{ and \} \frac\{\alpha\}\{\beta + \gamma\}
$$

$$
x / y \text { and } \frac{\alpha}{\beta+\gamma}
$$

Sums, products and integrals
$\backslash\left[\backslash\right.$ sum_i $x_{-} i=\backslash p r o d _\{i=2\}^{\wedge} 7 i+1=$
\int_\{z=0\}^\infty $z^{\wedge} 2$ \]

$$
\sum_{i} x_{i}=\prod_{i=2}^{7} i+1=\int_{z=0}^{\infty} z^{2}
$$

Ellipsis (dots), on the baseline and higher up

\[ x_0 ··· $x_{-}\{100\}$,
$\mathrm{x}_{-} 0+$ cdots $\left.+\mathrm{x}_{-}\{10\} \backslash\right] \quad x_{0} \ldots x_{100}, x_{0}+\cdots+x_{10}$

### 4.6 Arrays/matrices

$\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ arrays:


In the second parameter above, lcr, each of the three letters 'lcr' specify the alignment of one column: left, centered and right.

TeXstudio has a 'Quick Array' wizard to create a first approximation; see Figure 4.1. The wizard assumes that the text cursor is between math mode delimiters such as $\backslash[\ldots \backslash]$.
Matrices, amsmath-style:

\[ \begin\{matrix\} }

$\mathrm{x} \& \mathrm{y} \& \mathrm{z} \mathrm{\} \mathrm{\backslash}$	$x$	$y$
$.0 \& .01 \& .001$		
lend\{matrix\} \]	.0	.01

Notice the absence of column specifications: all columns are centered.
You get built-in round brackets '( )' with pmatrix and square brackets '[ ]' with bmatrix. See the amsmath documentation for more variations.

```
\[\begin{pmatrix}
x & y & z \\
.0 & . }01 & . 00
\end{pmatrix} \begin{bmatrix}
x & y & z \\
.0 & . 01 & . 001
\end{bmatrix} \]
.0 \& . 01 \& . 001
\end\{bmatrix\} \] }
```

Matrix with various ellipses:

$$
\left(\begin{array}{ccc}
x & y & z \\
.0 & .01 & .001
\end{array}\right)\left[\begin{array}{ccc}
x & y & z \\
.0 & .01 & .001
\end{array}\right]
$$

```
\[\begin{bmatrix}
```

$$
\begin{bmatrix}
    a_{11} & \ldots & a_{1m} \\
    a_{11} & \ldots & a_{1m} \\
    \vdots & \ddots & \vdots \\
    \vdots & \ddots & \vdots \\
    a_{n1} & \ldots & a_{nm}
    a_{n1} & \ldots & a_{nm}
\end{bmatrix}
$$

```
\end{bmatrix} \]
```

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right]
$$

or

```
\[\begin{bmatrix}
 a_{11} & \ldots & a_{1m} \\
 \hdotsfor{3} \\
 a_{n1} & \ldots & a_{nm}
\end{bmatrix} \]
```

$$
\left[\begin{array}{lll}
a_{11} & \ldots & a_{1 m} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right]
$$

Bracketing with large delimiters:

```
\[\left(\begin{array}{rr}
 10 & 100 \\
 a & b
 \end{array}\right) \]
```

        \(\left(\begin{array}{rr}10 & 100 \\ a & b\end{array}\right)\)
    This also works with braces ' $\}$ ' and square brackets '[ ]'. If you need only one of the two braces, use '.' for the other one:

```
\[\left\{ \begin{array}{c} a \\
 b \end{array} \right. \]
 {l}\begin{array}{l}{a}\\{b}
```


### 4.7 Multiline equations

There are various constructs for multiline equations. Basic $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ has the eqnarray and eqnarray* environments, the first with, the second without automatic numbering.

But we shall just give an example of the amstex align and align* environments:

```
\begin{align}
f(x) &= (a + b)^2 \nonumber \\
 &= a^2 + 2ab + b^2\label{AnEquation} \\
 &\ne (a+b) (a-b)\label{AnOther}
\end{align}
See equation \ref{AnEquation} and \ref{AnOther}.
```

$$
\begin{align*}
f(x) & =(a+b)^{2} \\
& =a^{2}+2 a b+b^{2}  \tag{4.2}\\
& \neq(a+b)(a-b)
\end{align*}
$$

See equations 4.2 and 4.3 .
The \& character defines the alignment. You see that every line get its own number, unless it is suppressed with a \nonumber command.

The starred version omits the numbering:
\begin\{align*\} }
$\mathrm{f}(\mathrm{x}) \quad \&=(\mathrm{a}+\mathrm{b})^{\wedge} 2 \backslash \backslash$
$\&=a^{\wedge} 2+2 a b+b^{\wedge} 2$

$$
\begin{aligned}
f(x) & =(a+b)^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

\end\{align*\} }

### 4.8 Fonts in math

### 4.8.1 Upright and italic

First, note that alphabetic characters will be italicized in math mode. Use \mathrm to get an upright version:

```
$E,\mathrm{E}, p, \mathrm{p}$
E,E,p,p
```


### 4.8.2 Bold

With bold, the situation is unfortunately a bit complicated. For regular 'latin' alphabetic characters, use kesthecharacteratthesametimeboldandupright:$\$\mathrm{M},\backslash\operatorname{mathbf}\{\mathrm{M}\},\mathrm{v},\backslash\operatorname{mathbf}\{\mathrm{v}\}\$\$\quad\mathrm{M},\mathbf{M},v,\mathbf{v}$ForGreekcharactersandothersymbols,try\boldsymbolinsteadof$\backslash$mathbf:\$\Psi,\boldsymbol\{\Psi\},\infty,\boldsymbol\{\infty\}\$$\Psi,\Psi,\infty,\infty$Ifneither\mathbfnor\boldsymboldoesthetrick,loadthebmpackage:\usepackage\{bm\}andtryagain.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

### 4.8.3 Fancy math fonts

Blackboard: \$\mathbb\{B\}\$<br>
Calligraphic: \$\cal\{A\}\$<br>
Fraktur: \$\mathfrak\{A\}\$

Blackboard: $\mathbb{B}$
Calligraphic: $\mathcal{A}$
Fraktur: $\mathfrak{A l}$

### 4.9 Macros

It can become pretty cumbersome to write something like $\backslash$ boldsymbol $\{\backslash$ alpha\} for $\alpha$ over and over again. You can define an abbreviation with the following code:
\newcommand\{\balph\}\{\boldsymbol\{\alpha\}\}
and then you just need to type $\backslash$ balph.
A macro can also have parameters. Below, [1] indicates the number of parameters and \#1 indicates the first parameter.
\newcommand\{\bvc\}[1]\{\vec\{\mathbf\{\#1\}\}\}
or, if you also want to use it in text without bothering with $\$$ signs:
\newcommand\{\bvc\}[1]\{\ensuremath\{\vec\{\mathbf\{\#1\}\}\}\}

With this definition, you can type $\backslash \operatorname{bvc}\{x\}$ rather than $\backslash \operatorname{vec}\{\backslash \operatorname{mathbf}\{\mathrm{x}\}\}$ or $\$ \backslash \operatorname{vec}\{\backslash \operatorname{mathbf}\{\mathrm{x}\}\} \$$ for $\overrightarrow{\mathbf{x}}$.

### 4.10 Practice

When trying out the code samples from this chapter, do not forget to load the AMS packages:

```
\documentclass{article}
\usepackage{amsmath,amsfonts,amssymb}
\begin{document}
\end{document}
```

Remember not to use inline math for displayed equations; see section 4.2.
The practice zip, see section 2.6 , contains an example $\mathrm{LaT}_{\mathrm{E}} X$ file math_sample.tex.
When looking for real mathematical texts to convert to $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$, you may turn to Wikipedia pages such as http://en.wikipedia.org/wiki/Linear_regression or http: //en.wikipedia.org/wiki/L2_norm, or use something of your own.

## Chapter 5

## Tabulars

### 5.1 Basics

Outside math mode, the tabular environment provides tables, which can be considered the text counterpart of multicolumn arrays. As with math arrays, columns are separated with ' $\&$ ' and rows with ' $\backslash \backslash$ '.

TeXstudio has a tabular wizard, but it is not much help when things get hairy.
A very basic table:

```
\begin{tabular}{lcr}
small & whatever & 1 \\ small whatever 1
big & huh? & 10000 big huh? 10000
\end{tabular}
```

There is a preamble $\{1 \mathrm{cr}\}$ which defines the alignment of the columns.
A table with some empty cells:

```
\begin{tabular}{lcr}
small & whatever \\ small whatever
big & & 10000 big 10000
\end{tabular}
```

You do not need to put in an ampersand \& for empty cells at the end.
You can add vertical rules in the preamble and horizontal rules with an \hline command:

```
\begin{tabular}[t]{|l|r|r|}
\hline
& \textit{Butter} & \textit{Cheese} \\
\hline
2000 & 9.1 & 5.7 \\
\hline
2001 & 11.7 & 6.3 \\
\hline
2002 & 12.2 & 6.5 \\
\hline
\end{tabular}
```

If you use horizontal rules at all, you should include commands
\{array\}\setlength\extrarowheight\{1pt\}inthepreamble,togetalittlebitofspacebetweenrulesandthecellsbelow.Youcanalsoissuean\extrarowheightcommandinthemiddleofyourdocument(fromnowon,\extrarowheightissetto1pt).undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Fewer rules is probably better; see table 5.1:

Table 5.1. Fewer rules are better

	Butter	Cheese
2000	9.1	5.7
2001	11.7	6.3
2002	12.2	6.5

### 5.2 Partial rules

```
\begin{tabular}{|lrr|}
\hline
& \textit{Butter} & \textit{Cheese} \\
\cline{2-3}
2000 & 9.1 & 5.7 \\
2001 & 11.7 & 6.3 \\
2002 & 12.2 & 6.5 \\
\hline
```

\end\{tabular\} }

### 5.3 Multicolumn

 parameters are successively:

1. number of columns to merge
2. preamble
3. content
```
\begin{tabular}{|lrr|}
\hline
& \multicolumn{2}{c|}{Products} \\
\cline{2-3}
& \multicolumn{1}{c}{\textit{B.}}
& \multicolumn{1}{c|}{\textit{C.}} \\
\cline{2-3}
```

	Products	
	$B$	$C$
2000	910.1	5.7
2001	1111.7	6.3
2002	1112.2	66.5

### 5.4 Decimal alignment

Often, you can simply right-align, since typically all data in a column are specified with the same number of decimal digits. This is the case with the Butter / Cheese examples above.

If this isn't the case, you can put the following code in your preamble:

```
\usepackage{dcolumn}
\newcolumntype{d}[1]{D{.}{.}{#1}}
```

This lets you use column types $\mathrm{d}\{\mathrm{n} . \mathrm{m}\}$ with $n$ digits before the decimal point and $m$ after:

```
\begin{tabular}{|l|d{4.2}|d{4.1}|}
\hline
2000 & 910.1 & 5.7 \\
2001 & 1111.77 & 6 \\
2002 & 1112.2 & 6666.5 \\
\hline
\end{tabular}
```

2000	910.1	5.7
2001	1111.77	6
2002	1112.2	6666.5

### 5.5 Text columns

For multiline texts, there is the $\mathrm{p}\{\ldots\}$ column specification:

```
\begin{tabular}{|lp{1.65in}|}
 \hline
 array & An improved implementation of \LaTeX's
 tabular and array environment\\
 dcolumn & Provides decimal and other alignment
 for tabular- and array environments\\
\hline
\end{tabular}
```

array	An improved implementa-   tion of LaTE   dcolumn   array environment
Provides decimal and other   alignment for tabular- and   array environments	

Usually, text cells are far too narrow for good justification. Here, ragged right would be much better. This can be done with the array package, which provides syntax for adding LaTEX code before (and after) each column entry:

```
\usepackage{array}
\newcolumntype{P}[1]{%
 >{\raggedright\hspace{0pt}\arraybackslash}p{#1}}
\begin{tabular}{|l|P{1.65cm}|}
\hline
What is \TeX? & \TeX{} is a programming
 language for typesetting.\\
\hline
\end{tabular}
```

What is $\mathrm{T}_{\mathrm{E}} \mathrm{X} ?$	$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is a   program-   ming   language   for type-   setting.

See the documentation of the array- and dcolumn packages for additional details on typesetting tabulars.

### 5.6 Floating tables

In LaTEX-speak, a table or figure 'floats' when its placement on the page does not necessarily match its placement in the LaTEX source: it may be moved to e.g. the top or bottom of a page, or get a page by itself. We shall discuss floating tables and figures in section 6.4 of the next chapter.

### 5.7 Shortcuts

Of course, nobody wants to re-key reams of numbers. There are several solutions:
» There is an excel2latex plugin for Excel, available from CTAN, which can create a LaTEX source with a tabular environment from a spreadsheet range. It took me some googling to get this package properly installed in MS Office 2010.
» Gnumeric is a spreadsheet program that can read OpenOffice/LibreOffice spreadsheets and export to $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$, although without a preamble. It was originally created for Linux, but Windows binaries are also available.
" There is a LaTEX package odsfile which can read OpenOffice/LibreOffice spreadsheets directly, e.g.:

```
\usepackage{odsfile}
```

\begin\{tabular\}\{...\} }
\includespread[file=filename.ods,range=a3:f8]
\end\{tabular\} }

This package requires the lualatex engine, i.e. you need to compile your $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ source with lualatex instead of pdflatex. odsfile is part of our $\mathrm{TEX}_{\mathrm{E}}$ Live installation. Search the documentation list (see 2.5.1) for 'odsfile'.
» If your data are in a simple text file, or at least in a reasonably simple binary format, it may be a nice programming exercise to convert them into LaTEX. Spreadsheets can export to .csv, which is such a format. Gnuplot is another such format. Search the documentation list for 'csv' or 'gnuplot'.

### 5.8 Practice

Do not forget to load the array- and dcolumn packages in the preamble sepackage\{array,dcolumn\}Nodoubt,youhavelotsoftablesandspreadsheetsofyourowntoconverttoLaTEX.Otherwise,youcanfindvarioustableexamplesinChapter8ofUnixTextProcessing,anoldUnixtextwhichhasbeenrepublishedinO'Reilly'sOpenBookProject:http://oreilly.com/openbook/utp/.Thepracticezip,seesection2.6,contains"anexamplefiletabulars_sample.tex»Variousfilessome_data...whichtogetherillustrategettingspreadsheetdataintoLaTEX.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

[^3]
## Chapter 6

## Graphics for LaTE $_{E} X$

Broadly speaking, there are two ways to get pictures into your $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ output:

1. Create graphics externally, and load them with $\operatorname{LaT}_{E} X$ commands
2. Add picture code directly to the $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ source.

The TikZ package offers a convenient general-purpose set of macros for programming diagrams, and there are several other options. However, in this course we shall only look at external graphics.

### 6.1 External graphics

Before we go any further, you should have some rudimentary understanding of graphics file formats. The most important distinction is between bitmaps and vectors.

Bitmaps are built up from pixels, i.e. tiny blocks of solid color. The smaller the blocks, the sharper the picture and the bigger the file. If you scale them up too far, the blocks become apparent; see figure 6.1.


Figure 6.1. Bitmapped- or raster graphics: above a photograph, below a screenshot, both with an enlarged detail at the right


Figure 6.2. Vector art: a LibreOffice data plot, a drawing created with Skencil and Inkscape and a function plot generated with pgfplots

Vector graphics are built up from mathematical shapes: lines, arcs, bézier curves, text objects; see figure 6.2. They scale well. Avoid converting vector graphics to bitmap.
Pdflatex and the other $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ engines can only work with certain types of graphic files:
pdf can contain both bitmapped and vector elements.
eps is closely related to pdf and can also contain both bitmapped and vector elements. It will be converted behind the scenes to pdf, at least if the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation allows $\mathrm{it}^{1}$.
png is a bitmapped format. It is first choice for screenshots.
jpg or jpeg is a bitmapped format with lossy compression ${ }^{2}$. It is first choice for photographic images.

[^4]

Figure 6.3. Raster and vector combined

### 6.2 Producers of graphic files

Mathematical software (R, MATLAB, Octave, Gnuplot) can generate eps and sometimes pdf.

Professional illustration software can usually export to eps and pdf. Inkscape is a capable free alternative to commercial products such as Adobe Illustrator and CorelDRAW.

OpenOffice/LibreOffice and MS Office can export documents and selections of documents to pdf.

Figure 6.2 shows vector graphics created by two external programs and one LaTEX macro package.
I am not going to list programs for bitmapped graphics. There are many good ones, often free or inexpensive.
Download Figures in $L a T_{E} X$ for a more in-depth although not quite up-to-date discussion.

### 6.3 Including an external graphics file

Graphics inclusion is not built into the LaTEX core. The graphicx package provides this facility. You need to load it in the preamble with
oucanplaceafigureinyourdocumentwithcodesuchasNormally,youdon'tneedtospecifytheextension.PdflatexwilllookforA_picture.jpg,A_picture.pngandA_picture.pdf.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

With the above code, the graphic file should be in the same directory as your .tex file. With a command

pdflatex will look in the figures subdirectory.
Make sure to use a relative path, forward slashes and no spaces or funny characters in file- or directory names: 'figures/A_picture' is fine, 'c: \Documents and Settings\your name
$\backslash \mathrm{A}$ picture' is not. The TeXstudio Insert Graphics wizard tries to produce the right syntax. If the picture is too large or too small, you can scale it to the desired size with a width or height parameter:


'width=\linewidth' may also come in handy.
You can also rotate a picture with an angle parameter, see Figure 6.4 which has been inserted with


### 6.4 Floating figures and tables

If you place large objects such as figures or tables at their natural position in the text stream, you tend to get awkward page breaks. Therefore, they are usually placed inside a 'float', which means in $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$-speak an environment which may be moved elsewhere: to e.g. the top or bottom of a page, or to a page by itself.
$\mathrm{LaT}_{\mathrm{E}} X$ defines two float environments: the table- and the figure environment. It is possible to define more. Figure- and table floats are numbered separately.
Within both environments, a \caption command is defined. In the examples below, there is a \label command after the \caption command for cross-referencing.
Table 5.1 on page 23 has been placed with the following code:

```
\begin{table}[b]
 \caption{Fewer rules are better}
 \label{tab:rules}
 \centering
 \begin{tabular}[t]{lrr}
 \end{tabular}
\end{table}
```

and Figure 6.4 on page 29 with:

```
\begin{figure}[b]
 \centering
 \includegraphics[width=.7in,angle=180]{figures/mouse}
 \caption{An upside-down figure}\label{fig:float}
\end{figure}
```

Codes [t] [b] or [tb] are optional placement specifiers. They indicate preferred placement of the float: at the bottom of the page (b), the top $(\mathrm{t})$, 'here' (h) or on a 'float page' $(\mathrm{p})$. Default: [tbp].


Figure 6.4. An upside-down figure

Note also the  command for centering the content of the environment. This command has no effect on the caption.

If you have many floating figures and tables, it helps placement if you have some or all of the following commands in the preamble ${ }^{3}$ :
\setcounter\{topnumber\}\{2\}
\setcounter\{bottomnumber\} \{2\}
\setcounter\{totalnumber\} \{3\}
\setcounter\{dbltopnumber\}\{2\}
\{.9\}
\{.1\}
\{.75\}
\{.9\}
\{.9\}
\{.9\}
With these commands, LaTEX is more willing to put several floats on a single page and to devote a larger portion of the page to floats without resorting to a dedicated float page.
Wrapping text around a figure requires an additional package. There are several to choose from, but the CTAN Catalogue recommends wrapfig and floatflt.

### 6.5 Practice documents for graphics and floats

The file float_sample.tex demonstrates both graphics inclusion and floats (several figures and one table).

The figures subdirectory contains graphics files used in float_sample.tex. All the files in this directory, with the exception of diamond.eps, can be loaded directly by pdflatex, and the latter file will be converted on-the-fly to pdf.

[^5]
## Chapter 7

## Presentations

Currently, the most popular presentations package is Beamer, and that is the package that we are going to discuss.

### 7.1 Alternatives

However, there are alternatives. For instance, if you have minimalistic tastes then you could simply set up suitable page dimensions with the geometry package:

```
\usepackage[%
paperwidth=108mm,
paperheight=81mm,
width=88mm,
height=62mm,
top=9mm,
footskip=20pt]{geometry}
```



For my own presentation classfiles I start out along these lines.
Other presentation classfiles besides Beamer are seminar, prosper and powerdot.

### 7.2 Getting started with Beamer

Beamer comes with elaborate but unwieldy documentation; search the documentation list (see 2.5.1) for 'beameruserguide.pdf'.

For a faster start, I added beamer_sample.tex to the practice files. You can also dig up the 'solutions' files from the official documentation, under the $<T_{E} X$ Live root $>\backslash$ texmf-dist $\backslash$ doc $\backslash$ latex $\backslash$ beamer $\backslash$ solutions folder.

### 7.3 Slides are frames

Beamer presentations consist of series of frames:

```
\documentclass{beamer}
\begin{frame}{Frame title}
 some content
\end{frame}
\begin{frame}
 \frametitle{Another title}
 more content
\end{frame}
```

The frame title can be specified as second argument to $\backslash$ frame, via a $\backslash$ frametitle command or omitted altogether.

There are various ways to display a frame progressively. In Beamer terminology, these successive stages are overlays. A simple way to create them is with the \pause command:

```
\begin{frame}
 \frametitle{Points}
 \begin{itemize}
 \item Some
 \pause
 \item discussion
 \pause
 \item points
 \end{itemize}
\end{frame}
```



However, there are far more complicated options for overlays. Chapter 9 of the Beamer manual gives more details.

### 7.4 Themes

Beamer uses themes to control different aspects of the presentation: layout, colors, headers and footers, fonts. The manual shows examples of different themes such as the default theme (no \usetheme command), Antibes, Bergen, Madrid and PaloAlto.

Default theme


PaloAlto


Instead of such a comprehensive theme you can also load component themes. The example from section 7.3 uses:
\useoutertheme\{infolines\} \% info at top and bottom
\usecolortheme\{seahorse\} \% color theme
Read Part III of the manual for details.

### 7.5 Modes

Beamer makes it possible to combine an article and a presentation into a single source. There is a \mode<thismode>\{...\} command to tell Beamer that the contents between braces only applies to thismode, where thismode can be presentation or article.

### 7.6 What about sections?

You can use sectioning commands between frames. They may or may not be used in presentation mode, depending on your theme: some themes will display them in the page header or in a sidebar; see the illustrations in section 7.3 and $7 \cdot 4$. They will also be listed by a \tableof contents command, which you can put into a frame.

### 7.7 Figures and tables

In a presentation, there is not much point in 'floating' an object. Beamer provides nonfloating figure- and table environments for people who want the associated captioning, numbering and cross-referencing.

### 7.8 Practice

Play around with beamer_sample.tex from the zipfile and with the solution templates from the Beamer documentation. Things to try:
» Display bulleted lists progressively by inserting \pause commands.
" Include graphics, either with or without a figure environment.
» Try out various themes.
» See how sectioning commands show up in the output under different themes.

## Appendix A

## Changing the appearance

This chapter is not part of the course, but people who are particular about the looks of their documents can find here some tips to modify the appearance of a document with preamble commands only, staying within the spirit of $\operatorname{LaT}_{E} X$.

## A. 1 Empty lines instead of paragraph indentation

Use the parskip package. Add the following line to the preamble:
\{parskip\}Theleftsamplebelowistypesetwithout,therightonewiththispackage:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

It was equally impossible to do the plainest right and to undo the plainest wrong without the express authority of the Circumlocution Office.

If another Gunpowder Plot had been discovered half an hour before the lighting of the match, nobody would have been justified in saving the parliament until there had been half a score of boards, half a bushel of minutes and a family-vault full of ungrammatical correspondence, on the part of the Circumlocution Office.

It was equally impossible to do the plainest right and to undo the plainest wrong without the express authority of the Circumlocution Office.
If another Gunpowder Plot had been discovered half an hour before the lighting of the match, nobody would have been justified in saving the parliament until there had been half a score of boards, half a bushel of minutes and a family-vault full of ungrammatical correspondence, on the part of the Circumlocution Office.

This also takes care of vertical spacing of itemize- and enumerate environments. This is still just a quick hack; for a professional result all measurements should be harmonized.

## A. 2 Double-spacing

This looks awful, but is often required for draft printouts. A line
doublespacing]\{setspace\}or,lessradically\usepackage[onehalfspacing]\{setspace\}inthepreamblewilldothetrick.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## A. 3 Display math alignment

A documentclass option fleqn:
\documentclass[fleqn] \{article\}
ensures that displayed equations are not centered but left-aligned, with a fixed indentation from the left. The left sample below has the default centered alignment of equations, the right one has the option applied and has left-aligned equations:

$$
\begin{equation*}
\Delta \ln \left(\frac{Q}{L}\right)_{0, T}=c_{0}+\gamma\left(\frac{I^{G}}{Q}\right)_{0, T}+\delta \quad(1) \quad \Delta \ln \left(\frac{Q}{L}\right)_{0, T}=c_{0}+\gamma\left(\frac{I^{G}}{Q}\right)_{0, T}+\delta \tag{1}
\end{equation*}
$$

The price and demand elasticities can now be calculated by:

$$
\begin{equation*}
\varepsilon_{C j}=\frac{\partial \ln C^{*}}{\partial \ln j}=\frac{\partial C^{*}}{\partial j} \frac{j}{C^{*}} \tag{2}
\end{equation*}
$$

## A. 4 Page dimensions

\usepackage[textwidth$=10\mathrm{~cm}$,textheight=17cm]\{geometry\}Therearealotofoptions,alsoforpageheadersand-footersandforanasymmetriclayout.Again,searchthedocumentationlist(see2.5.1).undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## A. 5 Font size

For a slightly larger font, use the 11 pt - or 12 pt document class option:
\documentclass[12pt]\{article\}
The default is 10 pt. This only works for these predefined sizes. The ext-classes from the extsizes package provide a few more sizes. Otherwise, you are in for a fair amount of coding.

## A. 6 Fonts

Several packages change the font for the entire document. However, good math fonts are in short supply, so choices are limited if you want matching math typesetting. Check out rsearchfor'font'intheCTANCatalogue.Thetypesetsamplesbelowhavetherequiredpreamblecommandsontheleft.Palatino:\usepackage[TS1,T1]\{fontenc\}\usepackage\{amsmath\}\usepackage\{newpxtext,newpxmath\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

$$
\begin{equation*}
\Delta \ln \left(\frac{Q}{L}\right)_{0, T}=c_{0}+\gamma\left(\frac{I^{G}}{Q}\right)_{0, T}+\delta \tag{1}
\end{equation*}
$$

The price and demand elasticities can now be calculated by:

$$
\begin{equation*}
\varepsilon_{C j}=\frac{\partial \ln C^{*}}{\partial \ln j}=\frac{\partial C^{*}}{\partial j} \frac{j}{C^{*}} \tag{2}
\end{equation*}
$$

The Bitstream Charter-based font setup of a previous edition of these notes:

$$
\begin{equation*}
\Delta \ln \left(\frac{Q}{L}\right)_{0, T}=c_{0}+\gamma\left(\frac{I^{G}}{Q}\right)_{0, T}+\delta \tag{1}
\end{equation*}
$$

\usepackage\{amsmath\}\usepackage[charter]\{mathdesign\}undefinedundefined

The price and demand elasticities can now be calculated by:

$$
\begin{equation*}
\varepsilon_{C j}=\frac{\partial \ln C^{*}}{\partial \ln j}=\frac{\partial C^{*}}{\partial j} \frac{j}{C^{*}} \tag{2}
\end{equation*}
$$

## A.6.1 System fonts with XeLaT $_{E} X$ and LuaLa $T_{E} X$

The $\mathrm{XeT}_{\mathrm{E}} X$ - and LuaTE $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ engines support system fonts, including non-latin scripts and modern Unicode-based OpenType fonts. This requires the fontspec package.

Both expect Unicode input, although the usual $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ notations (e.g. \"e for ë and ' ' for quotes) are also valid. Do not use the inputenc package.
$\mathrm{Xe}_{E} X$ was originally developed to access Mac OS system fonts. Later, it was ported to Linux and Windows.
$\operatorname{LuaT}_{E} X$ has wider ambitions ${ }^{1}$, but what matters here is that it has adopted $\mathrm{XeT}_{E} \mathrm{X}^{\prime}$ 's support for system fonts and OpenType fonts.

In many cases, you can switch between lualatex and xelatex without changing your $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ sources.

Both are available in TeXstudio via the Tools / Commands menu, but you can also set one of these as the default via Options / Configure TeXstudio... / Build / Default Compiler.

Warning. The fontspec package needs information about the fonts that it is going to load. XeLaTEX and LuaLaTEX each have their own font database. If they compile a document which uses fontspec and they fail to find a font database that they like, they will build a new one. This can take a long time, especially with $\mathrm{XeLaT}_{\mathrm{E}} \mathrm{X}$. Although the launcher copies pre-generated font caches to your profile, there is no guarantee that those are still acceptable to $\mathrm{XeT}_{\mathrm{E}} \mathrm{X}$ or $\mathrm{LuaT}_{\mathrm{E}} \mathrm{X}$.

So please think twice before using fontspec on a university workstation while in class!
Cambria. The Cambria font family is especially useful since it contains a full set of mathematical symbols. It is present on most Windows systems and is bundled with e.g. the free PowerPoint viewer:
sepackage\{unicode-math\}\setmainfont\{Cambria\}\setmathfont\{CambriaMath\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

$$
\begin{equation*}
\Delta \ln \left(\frac{Q}{L}\right)_{0, T}=c_{0}+\gamma\left(\frac{I^{G}}{Q}\right)_{0, T}+\delta \tag{1}
\end{equation*}
$$

The price and demand elasticities can now be calculated by:

$$
\begin{equation*}
\varepsilon_{C j}=\frac{\partial \ln C^{*}}{\partial \ln j}=\frac{\partial C^{*}}{\partial j} \frac{j}{C^{*}} \tag{2}
\end{equation*}
$$

Some standard Windows fonts. For less serious applications, you may want to typeset a single passage in a decorative font. If the fontspec package is loaded, you can change midway to another font with the ackage\{fontspec\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Temporarily switch to $\{\%$
\fontspec[Mapping=tex-text] \{Comic Sans MS\}
Comic Sans MS\} and to $\{\%$
\fontspec [Mapping=tex-text] \{Tahoma\}
Tahoma\} and back.

Temporarily switch to Comic Sans MS and to Tahoma and back.

## A.6.2 OpenType fonts in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live contains several OpenType fonts, which can be used with xelatex and lualatex. If these are not also available as system fonts, selecting them can be a bit tricky, especially with xelatex. The safe solution is specifying them with the full filename, including extension but excluding the directory:

```
\usepackage{amsmath}
\usepackage{fontspec}
\usepackage{unicode-math}
% a fail-safe way of specifying TL fonts
\setmainfont[
 Ligatures=TeX,
 BoldFont=texgyretermes-bold.otf,
 ItalicFont=texgyretermes-italic.otf,
 BoldItalicFont=texgyretermes-bolditalic.otf]%
{texgyretermes-regular.otf}
\setmathfont[
 math-style=ISO,bold-style=ISO,vargreek-shape=TeX]%
{texgyretermes-math.otf}
```

$$
\begin{equation*}
\Delta \ln \left(\frac{Q}{L}\right)_{0, T}=c_{0}+\gamma\left(\frac{I^{G}}{Q}\right)_{0, T}+\delta \tag{1}
\end{equation*}
$$

The price and demand elasticities can now be calculated by:

$$
\begin{equation*}
\varepsilon_{C j}=\frac{\partial \ln C^{*}}{\partial \ln j}=\frac{\partial C^{*}}{\partial j} \frac{j}{C^{*}} \tag{2}
\end{equation*}
$$

[^6]
## Appendix B

## Language support

This chapter briefly discusses of $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}^{\prime}$ s support for non-english and multilingual typesetting. This is not part of the course and there are no practice files.

## B. 1 Babel

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ supports many languages, also within the same document. For $\mathrm{La} \mathrm{T}_{\mathrm{E}} \mathrm{X}$, language support is provided by the Babel package. Its principal tasks are proper hyphenation and translation of text strings such as 'Table of Contents' and 'Chapter'.

For e.g. Dutch hyphenation and Dutch text strings, use the following code in the preamble:
ch]\{babel\}Itisalsopossibletouseseverallanguagesinonedocument:\documentclass\{article\}\usepackage[UKenglish,dutch]\{babel\}\begin\{document\}}\tableofcontents\begin\{abstract\}}Samenvattingvanhetartikel.\end\{abstract\}}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

\section\{Een sectie\}

Afbreken: overgangsregelingen papierversnipperaar
overl"ydensadvertentie.
\selectlanguage\{UKenglish\}

\section\{An English section\}

Enchanted surreptitious interpretation disingenuous \end\{document\} }

## Inhoudsopgave

1 Een sectie 1
2 An English section 1

## Samenvatting

Samenvatting van het artikel.

## 1 Een sectie

Afbreken: overgangsregelingen papierversnipperaar overlijdensadvertentie.

## 2 An English section

Enchanted surreptitious interpretation disingenuous

See e.g. section 2.5 in The Not So Short Introduction for more particulars.

## B. 2 Non-western scripts with $\mathrm{XeT}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{Lua}_{\mathrm{E}} \mathrm{X}$

For far-eastern and Arab languages and scripts, we turn to the newer $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ engines $\mathrm{XeT}_{\mathrm{E}} \mathrm{X}$ and LuaTEX.

The Polyglossia package replaces Babel for $\mathrm{XeLaT}_{\mathrm{E}} X$ and LuaLaT $\mathrm{E}_{\mathrm{E}} X$. The documentation of this package includes several typeset examples of non-Western scritps; see the documentation list.

## Appendix C

## Bibliographic references

For bibliographic references, $\mathrm{LaT}_{\mathrm{E}} X$ uses the $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}$ database system. This chapter, which is not part of the course, takes a look at:
» incorporating bibliographic references during the compilation process; see section C.2.1.
» the evolution of citation- and bibliography handling; see section C.3.
" the $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database format, and software to build and maintain such a database; see sections C. 6 and C. 10 .

BibTEX practice files are in a separate subdirectory bibtex of the practice zipfile.

## C. 1 The why and how of $\operatorname{Bib} T_{E} X$

Different journals have different requirements for bibliographic references:
» What to include, in what order
» Capitalization
» Punctuation
» Abbreviations
" Styling of text
With a bibliography manager you can maintain a database of bibliographic references and have it generate the references for any paper in the required format.

Below a very short $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ source which references entries from an existing $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database (you can find the full BibTEX entries on page 43):

```
\documentclass{article}
\bibliographystyle{plain}
\begin{document}
See \cite{lcompanion} and \cite{biboostrum}.
\bibliography{bibdemo} % this line specifies bibdemo.bib as database
\end{document}
```

As you can guess, lcompanion and biboostrum are keys of database entries:

```
@Article{biboostrum,
 author = "Piet van Oostrum",
 title = "Een tutorial over het gebruik van {Bib{\TeX}}",
 year = 2004,
}
@Book{lcompanion,
 Author = "Frank Mittelbach and Michel Goossens",
 Title = "The {\LaTeX{}} Companion",
 year = 2004,
}
```

We get the following output:

```
See [1] and [2].
```


## References

[1] Frank Mittelbach and Michel Goossens. The $A T E X$ Companion. Addison-Wesley, 2nd edition, 2004.
[2] Piet van Oostrum. Een tutorial over het gebruik van BibTEX. MAPS, 30:66-86, 2004.

You can put the \bibliographystyle command anywhere before the \bibliography command. ${ }^{1}$

Bibliography styles are provided by .bst files: plain. bst in the example above, alpha.bst in the example from section C.3.1, both hidden deep inside the $T_{E} X$ Live directory structure. Once you have prepared your $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ source and your $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database, take the following steps:

1. Run pdflatex to generate the information that $\operatorname{BibT}_{\mathrm{E}} \mathrm{X}$ needs
2. Run bibtex to generate the list of references
3. Run pdflatex to include the list of references
4. Run pdflatex again to resolve bibliographic references (just like other cross-references) and check the typeset output after steps 1, 3 and 4. TeXstudio has a bibtex command in the Tools menu. You can also use keyboard shortcuts: F6, F11, F6, F6. Note that after further editing a single pdflatex run is enough as long as the list of references stays the same.
The Build button $\Delta$ should do all required steps for you with a single mouse click.

## C. 2 nocite: entries without citations

You can use \nocite instead of \cite if you don't want an automatically generated citation in the running text but do want an entry in the list of references:
\nocite\{lcompanion\}
Tip. You can quickly create a formatted printout of your $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database with the $\backslash$ nocite\{*\} command (see testbib.tex from the practice files):

```
\documentclass{article}
\bibliographystyle{plain}
\begin{document}
\nocite{*}
\bibliography{your_bibtex_file}
\end{document}
```


## C.2.1 Practice

1. Run the bibtex_sample example: load bibtex_sample.tex in TeXstudio and carry out the four steps listed on page 39 .
2. Collect a few fragments with bibliographic references from http://en . wikipedia.org/

[^7]wiki/Factors_of_production into a $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ document, replacing footnotes with proper cite commands and a proper list of references. You can use the factors. bib bibliography database from the practice files.

## C. 3 Bibliography styles: three generations

## C.3.1 The original BibTEX

The original $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ from 1988 uses a simple citation style: the entries in the list of references get an automatically generated label - either numerical or alphanumerical - for crossreferencing. We already saw numerical references. Here is an example with alphanumerical labels:

```
\documentclass{article}
\bibliographystyle{alpha}
\begin{document}
See \cite{lcompanion} and \cite{biboostrum}.
\bibliography{bibdemo}
\end{document}
```

See [MG04] and [vO04].
References
[MG04] Frank Mittelbach and Michel Goossens. The ${ }^{E T} T_{E} X$ Companion. Addison-
Wesley, 2nd edition, 2004.
[vO04] Piet van Oostrum. Een tutorial over het gebruik van BibTEX. MAPS, 30:66-
86, 2004.

## C.3.2 The next step: author - Year citation styles

The classical bibliography styles didn't provide for author - year citation styles, such as in the examples below:

```
See Castaldo et al. from 2006 and Knuth (1990).
```


## References

Castaldo, R. J., M. A. McKay, and V. Tosic (2006). Exposing gnu octave signal processing functions as extensible markup language (xml) web services. In Proc. Canadian Conf. Electrical and Computer Engineering CCECE '06, pp. 1442-1445.

Knuth, D. E. (1990). The $T_{E}$ Xbook, Volume A of Computers and Typesetting. Reading, MA, USA: Addison-Wesley.
or, with a different bibliography style:

See Castaldo et al. from 2006 and Knuth (1990).

## References

R. J. Castaldo, M. A. McKay, and V. Tosic, in Proc. Canadian Conf. Electrical and Computer Engineering CCECE '06 (2006), pp. 1442-1445.
D. E. Knuth, The $T_{E}$ Xbook, vol. A of Computers and Typesetting (Addison-Wesley, Reading, MA, USA, 1990).

Note the absence of labels in the list of references.
Author-year citation styles are provided by the natbib package and by various alternatives such as the apalike and harvard packages. natbib is the most popular one and can replace most of the others. This is the $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ preamble code:

```
\usepackage{natbib}
\bibliographystyle{chicago} % first example
%\bibliographystyle{apsrev} % second example
```

Cite commands in the running text:
See \citeauthor\{castaldo2006\} from \citeyear\{castaldo2006\} and \cite\{texbook\}.

A sample of citation commands supported by natbib:

```
\cite{tamethebeast} Markey,2005
\citet{tamethebeast} Markey (2005) 'in-text'
\citep{tamethebeast} (Markey, 2005) 'parenthesized'
\citet[noted] {lshort} Oetiker et al. (2011, noted)
\citep*{lshort} (Oetiker et al., 2011)
\citeauthor{tamethebeast} Markey
\citeyear{lshort} 2011
\nocite works as usual.
```

See the natbib manual for more variations and for customization options.
The practice files include a file bibtex_natbib_sample.tex to get you started.

## C. 4 Generating your own bibliography style with custom-bib/makebst

Journals sometimes have very specific requirements as to the formatting of bibliographic entries, without providing a bibliography style implementing this formatting. Even if a suitable style exists, it may be hard to find one, although the $U K T_{E} X ~ F A Q$ has to offer some advice. One way out is creating your own . bst file.

If a style is almost correct, and if you can make some sense out of . bst files (a big if!), then maybe you can fix it yourself.

Another option is the makebst program. This is a two-step process: in the first step, you have to answer a very long list of questions. Your answers are written to an intermediate answers file. In the second step, a . bst file is generated from this list of answers. Search the documentation list (see 2.5 .1 ) for custom-bib or makebst.

## C. 5 The latest and greatest: biblatex

A radical reimplementation of bibliography support is biblatex. Bibliography styles aren't written in the unfamiliar .bst syntax but in $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$, and the role of $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}$ is reduced to collecting and sorting the bibliographic entries. $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ itself selects, arranges and formats the fields of the bibliographic entries. Advantages include
» many variations in bibliography style can be realized simply with package options, without editing .bst files
» better support for non-Western languages
" more citation options, because $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ has access to all the bibliographic information
» easy per-chapter bibliographies
Fortunately, an old $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database is still compatible with biblatex.

## Getting started with biblatex

You can easily experiment with biblatex. If you include a package option natbib or natbib= true then you can keep using natbib cite commands in your LaTEX source.

You should also configure TeXstudio to use biber instead of BibTEX (Options / Configure TeX studio / Build / Default Bibliography).

Below are biblatex preamble commands, assuming biber as backend; note that with biblatex the ommandshouldbeinthepreamble:\usepackage[style=numeric]\{biblatex\}\bibliography\{bibdemo\}Andneartheend:\printbibliographyThecompletesourceforthefirstexample:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\documentclass{article}
\usepackage[style=numeric]{biblatex}
\bibliography{bibdemo}
\begin{document}
See \cite{lcompanion} and \cite{bacgri2003}.
\printbibliography
\end{document}
```

Output:
See [2] and [1].

## References

[1] Lance J. Bachmeier and James M. Griffin. "New evidence on asymmetric gasoline price responses". In: The Review of Economics and Statistics 85.3 (2003), pp. 772-776.
[2] Frank Mittelbach and Michel Goossens. The ${ }{ }^{4} T_{E} X$ Companion. 2nd. AddisonWesley, 2004.

An example with author-year citations and the new \citetitle command:

```
\documentclass{article}
\usepackage[bibstyle=authoryear,block=ragged] {biblatex}
\bibliography{bibdemo}
\begin{document}
See \citetitle{lcompanion} by \citeauthor{lcompanion} published in
\citeyear{lcompanion}.
\printbibliography
\end{document}
```

See The ${ }^{A T} T_{E} X$ Companion by Mittelbach and Goossens published in 2004.

## References

Mittelbach, Frank and Michel Goossens (2004). The ${ }^{E T} T_{E} X$ Companion. 2nd. Addison-Wesley.

The practice files include a file bibtex_biblatex_sample.tex to get you started with biblatex.

By now, there are quite a few biblatex styles (search for 'biblatex-' in the CTAN Catalogue), and existing styles can be tweaked with options. Still, it is conceivable that none of the existing styles are usable. And there is no makebst (section C.4) for biblatex. It is also possible that the recipient has an antiquated $\mathrm{T}_{\mathrm{E}} X$ setup and is not willing or not able to handle biblatex. So it is too soon to assign the older solutions to the dustbin.

## C. 6 The BibT $\mathrm{E}_{\mathrm{E}}$ database format

This section describes the $\operatorname{Bib}_{\mathrm{E}} X$ database format. Like a $\mathrm{LaT}_{E} X$ source, a BibT$T_{E} X$ database is a plain text file. It has an extension .bib, and consists of a series of records such as the following:

```
@Article{biboostrum,
 author = "Piet van Oostrum",
 title = "Een tutorial over het gebruik van {Bib{\TeX}}",
 journal = "{MAPS}",
 volume = "30",
 pages = "66--86",
 year = 2004,
}
@Book{lcompanion,
 Author = "Frank Mittelbach and Michel Goossens",
 Title = "The {\LaTeX{}} Companion",
 Publisher = AW,
 year = 2004,
 Edition = "2nd",
}
```

Note the general structure: a $\operatorname{Bib}_{\mathrm{E}} \mathrm{X}$ record consists of:
" The type of publication, e.g. article or book
» A key, e.g. biboostrum or lcompanion, which is used for citing
» A list of fields

The list of required and optional fields varies with the entry type. You can add additional fields, e.g. as comments for yourself. Any field which is not required or optional will simply be ignored.

For most fields, the values should be enclosed in braces \{ and \}, or in double quotes " ". Values which are clearly numbers, such as years and volume numbers, may be entered 'bare'.

You should enclose $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ code in an additional set of braces to keep BibT $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ from messing with it. You should do the same with all-caps words.

As to accented characters: the safe solution is always to use macros: $\{\backslash$ ' $e\}$ rather than é, although with some care accented letters may work ok; see section C.8.1.

## C. 7 BibTEX editors and bibliography managers

For creation and maintenance of your $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database it is best to pick a program that uses $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ as its native format.

Our $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live installation includes the $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}$ editor JabRef, which is a Java program and therefore runs on all platforms where Java is installed. On Mac OS, BibDesk is a popular choice.

Editing manually with your LaTEX editor is another good option.
A general-purpose bibliography manager may work for you, but check its BibTEX export carefully. The university offers access to RefWorks. However, its $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}$ support leaves something to be desired.

Zotero is a popular Firefox extension for collecting and managing references. It can create bibliographic entries from e.g. Amazon pages. Below the Zotero BibTEX export from such an entry:

```
@book{voss_latex_2011,
 title = {Latex Quick Reference},
 isbn = {1906860211},
 publisher = {Uit Cambridge Ltd.},
 author = {Voss, Herbert},
 month = sep,
 year = {2011}
}
```

Further suggestions can be found at http://tex. stackexchange.com/questions/33619/.
There are other services which create $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ entries, such as http://lead.to/amazon/, or, if you have an ISBN number for a book, you can go to http://ottobib.com/. See also http://tex.stackexchange.com/questions/143/for more suggestions.

## C. 8 Examples

Now let us have a more in-depth look at the $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database format, by looking at a series of examples.

```
@TECHREPORT{canond2003,
 author = "Marcel Canoy and Sander Onderstal",
 year = 2003,
```



Figure C.1. JabRef $B i b T_{E} X$ editor

```
 title = "Tight oligopolies: {I}n search of proportionate remedies",
 number = 29,
 institution = "{CPB} Netherlands Bureau for Economic Policy Analysis",
 address = "The Hague",
}
```

TECHREPORT is the type of the publication. Capitalization is not significant in BibTEX entry types and field names.

The key canond2003 is used by the various cite commands.
$\{C P B\}$ is enclosed in braces to protect it against $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}^{\prime}$ s automatic capitalization.
Also notice the author field: this consists of two authors, each in first last format. The names are separated with 'and'.

## C.8.1 Example: brace delimiters, alternate author syntax, accented letters

```
@Misc{clementsgalvao2001,
 author = {Clementz, Michael P. and Galv{\~a}o, Ana Beatriz},
 title = {A comparison of tests of non-linear cointegration with an application
 to the predictability of {US} interest rates using the term structure},
 year = 2001,
 howpublished = {Mimeo, Department of Economics, University of Warwick},
}
```

This example encloses values in braces rather than double quotes. This makes it possible to use values which include double quotes (nesting braces within braces is never a problem).

The author field uses the alternate syntax of last, first. The BibTEX manual (Patashnik (1988)) has more to say about the parsing of author's names.
Note that this entry has a different set of fields. The bibliography style determines which entry types are recognized and which fields are required or optional for each entry type.

Again, braces around US ensure that $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ leaves capitalization alone.

## Accented characters

The above example includes a macro for an accented letter inside braces: sh\sim\mathrm{a}\}\).Youcanuseaccentedlettersoutright,butitrequirescare:makesurethattheencoding,probablyeitherlatin1orutf8,matchestheLaTEXsource,andthatyouincludeapreamblecommand\usepackage[enc]\{inputenc\}whereencshouldusuallybeutf8orlatin1,unlessyouuseoneofthemodern$\mathrm{T}_{\mathrm{E}}\mathrm{X}$enginesXeLaTEXorLuaLaTEX,whichalwaysexpectutf8.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
C.8.2 Example: a predefined abbreviation and a dummy field
@string{AW = "Addison-Wesley"}
@Book{lcompanion,
 Author = "Frank Mittelbach and Michel Goossens",
 Title = "The {\LaTeX{}} Companion",
 Publisher = AW,
 year = 2004,
 Edition = "2nd",
 ignorablefield = "too fat for my backpack",
}
```

You can define abbreviations with @string entries. You can also create a . bib file with @string entries, and load it before the actual database file.

This entry also uses a dummy field ignorablefield for private information.

## C.8.3 Example: author names with a 'von' part; number ranges

```
@article{meycra2004,
 author = {Meyer, Jochen and von Cramon-Taubadel, Stephan},
 title = {Asymmetric Price Transmission: A Survey},
 year = 2004,
 journal = {Journal of Agricultural Economics},
 volume = 55,
 number = 3,
 pages = {581-611},
}
@inproceedings{ricejava,
 author = "Istiqomah Istiqomah and Manfred Zeller and
 Stephan von Cramon-Taubadel",
 title = "Volatility and Integration of Rice Markets in Java, Indonesia",
 booktitle = "Tropentag 2005",
 year = 2005,
}
```

These examples feature an author's name with a 'von' part, first in von last, first syntax, then in first von last syntax. Again, Patashnik (1988) explains handling of author's names.
Also note that $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ will expand the range 581-611 to 581--611, producing a proper n dash in the typeset output.
You can read a full description of the .bib format in the original $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}$ documentation, Patashnik (1988). This documentation doesn't cover extensions from e.g. the Natbib- and biblatex packages and corresponding bibliography styles.

## C. 9 The url field

Some bibliography styles, including styles created with makebst/custom-bst, support an url field. It is even required for the biblatex online entry type. It is a good idea to load the url package, to make sure that special characters such as underscores and tildes are rendered correctly, and to enable line-breaking inside the url. $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ source:

```
\documentclass{article}
\usepackage{natbib}
\bibliographystyle{plainnat}
\usepackage{url}
\nocite{biboostrum}
\bibliography{bibdemo}
\end{document}
BibTEX entry:
```

results in:

```
```

@Article{biboostrum,

```
@Article{biboostrum,
 author = "Piet van Oostrum",
 author = "Piet van Oostrum",
 title = "Een tutorial over het gebruik van {Bib{\TeX}}",
 title = "Een tutorial over het gebruik van {Bib{\TeX}}",
 journal = "{MAPS}",
 journal = "{MAPS}",
 volume = "30",
 volume = "30",
 pages = "66--86",
 pages = "66--86",
 year = 2004,
 year = 2004,
 url = "http://www.ntg.nl/maps/pdf/30_15.pdf",
 url = "http://www.ntg.nl/maps/pdf/30_15.pdf",
}
```

}

```

Piet van Oostrum. Een tutorial over het gebruik van BibTEX. MAPS, 30:66-86, 2004. URL http://www.ntg.nl/maps/pdf/30_15.pdf.

\section*{C.9.1 Urls in other fields}

If the bibliography style doesn't use an url field, you can include an url in another field. 'Howpublished' is a good option, but only in combination with e.g. the Misc entry type, since it is ignored by most other entry types. Alternatively, the 'Note' field is supported by almost all entry types.
```

@Manual{tamethebeast,
author = "Nicolas Markey",
title = "Tame {t}he {BeaST}, The B to X of {BibTeX}",
year = 2005,
note = "{http://www.lsv.ens-cachan.fr/~markey/BibTeX/doc/ttb_en.pdf}",
}

```
```

@Misc{some,
author = "Au Thor",
title = "Some title",
howpublished = ".a.site.net/sometitle.html}",}LaTEXsource:\documentclass{article}\bibliographystyle{plain}\usepackage{url}\nocite{*}\bibliography{nourl}\end{document}[1]NicolasMarkey.TametheBeaST,TheBtoXofBibTeX,2005.http://www.lsv.ens-cachan.fr/~markey/BibTeX/doc/ttb_en.pdf.[2]AuThor.Sometitle.http://www.a.site.net/sometitle.html.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```

The natbib reimplementations plainnat, abbrvnat and unsrtnat of the corresponding classical bibliography styles do provide a url field and don't require the above workarounds. More trickery for working around BibTEX's automatisms can be found in Markey (2005) and in the \(\mathrm{Bib}_{\mathrm{E}} X\) chapter of the \(U K T_{E} X ~ F A Q\).

\section*{C. 10 Practice}

Add entries to bibdemo.bib and check your work with testbib.tex and the \nocite\{*\} command, as described in section C.2.

A suggestion: Find a Wikipedia page with many references, e.g. http://en.wikipedia. org/wiki/Economics. Locate entries with enough bibliographic information and turn them into \(\mathrm{Bib}_{\mathrm{E}} X\) entries. Or get more bibliographic details, or even a complete \(\mathrm{BibT}_{\mathrm{E}} \mathrm{X}\) entry via e.g. Google Scholar and other resources mentioned in http://tex.stackexchange.com/ questions/143/.

\section*{C. 11 Troubleshooting}

\section*{C.11.1 Random things to try}

Rerun \(\operatorname{LaT}_{\mathrm{E}} \mathrm{X}\). Maybe you just need another \(\mathrm{LaT}_{\mathrm{E}} \mathrm{X}\) run to resolve the \(\backslash\) cite commands.
Problems with old auxiliary files. Sometimes it helps to start with a clean slate by getting rid of old auxiliary files: click on 'Clean' on the Tools menu and rebuild.

This may be necessary if an error or incompatibility in one of the auxiliary files prevents \(\mathrm{LaT}_{\mathrm{E}} \mathrm{X}\) from continuing. An incompatibility may arise if you change something in the bibliographic options.

\section*{Input encoding}

Maybe there is a mismatch between the encoding of the \(\operatorname{Bib}_{\mathrm{E}} \mathrm{X}\) database export and the LaTEX source. Biblatex has a bibencoding option.

\section*{C.11.2 JabRef}

Make sure you run only one copy of JabRef. In particular, do not load one BibTEX file into two JabRef sessions, which can easily happen.
Click File / Save database to make sure that \(\mathrm{BibT}_{\mathrm{E}} \mathrm{X}\) or biber gets up to date information.

\section*{C.11.3 Get more information}

In TeXstudio, try to get more detailed information, e.g. by clicking on the error tab of the tabbed pane under the edit area.

Log files can also be useful, but often contain masses of useless gibberish. The abovementioned tabbed pane has a tab for the \(\mathrm{LaT}_{\mathrm{E}} \mathrm{X} \log\), but not for the \(\mathrm{BibT}_{\mathrm{E}} \mathrm{X} \log\), which may be more useful. You can load the \(\mathrm{BibT}_{\mathrm{E}} \mathrm{X} \log\) into Te Xstudio anyway: click on File \(>\) Open. Make sure that 'Files of type' is set to 'All files(*)' and then select filename.blg, assuming that the LaTEX file is called filename.tex. Another file to look at is filename.aux.

\section*{Documentation and online resources}

American Mathematical Society (1999-2002). User's Guide for the amsmath Package. Part of the amsmath package; included in most free \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) distributions.

Array package (2011). A new implementation of LaTEX's tabular and array environment, included in most \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) distributions.

BibDesk. GUI bibliography manager for the Mac. URL: http: //bibdesk. sourceforge .net/.
CTAN. The Comprehensive \(T_{E} X\) Archive Network. url: http://mirror.ctan.org/.
CTAN Catalogue. URL: http://mirror.ctan.org/help/Catalogue/brief.html.
Dcolumn package (2001). Provides decimal and other alignment for tabular- and array environments, included in most \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) distributions.

Fairbairns, Robin, ed. UK \(T_{E} X\) FAQ. URL: http://faq.tug.org/.
Getting Started with \(T_{E} X, L a T_{E} X\), and Friends. urL: http://www.tug.org/begin.html.
Google Scholar. URL: http://scholar.google.com/.
JabRef. GUI bibliography manager written in Java. URL: http : // jabref . sourcef orge . net/.
Jørgensen, Palle, ed. LaTE \(X\) font Catalogue. url: http://www.tug.dk/FontCatalogue/.
Knuth, Donald E. (1986). The \(T_{E} X b o o k . ~ V o l . ~ A . ~ C o m p u t e r s ~ a n d ~ T y p e s e t t i n g . ~ A d d i s o n-W e s l e y . ~\)
Kopka, Helmut and Patrick W. Daly (2003). Guide to LaTEX. Fourth. Addison-Wesley.
Kroonenberg, Siep (2012). Figures in LaTEX. url: http: //tex. aanhet . net/rugtex/figlatex. pdf.

Lamport, Leslie (1994). LaTEX, A document preparation system. Second. Addison-Wesley.
Lehman, Philipp (2012). The biblatex Package. Published as part of the biblatex package.
\(T_{E} X\) Live. URL: http://www.tug.org/texlive/.
Markey, Nicolas (2005). Tame the BeaST. Exhaustive BibTEX tutorial, available from CTAN. URL: http://www.lsv.ens-cachan.fr/~markey/BibTeX/doc/ttb_en.pdf.

NTG, Dutch-language \(T_{E} X\) Users Group. url: http://www.ntg.nl/.
Oetiker, Tobias et al. (2011). The Not So Short Introduction to \(L a T_{E} X 2_{\varepsilon}\). Included in most free \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) distributions. URL: http://mirror.ctan.org/info/lshort/.

Oostrum, Piet van (2004). "Een tutorial over het gebruik van BibTEX". In: MAPS 30, pp. 6686. URL: http://www.ntg.nl/maps/pdf/30_15.pdf.

Pakin, Scott (2009). The Comprehensive LaTEX Symbol List. URL: http : / /mirror . ctan. org/ info/symbols/comprehensive/.

Patashnik, Oren (1988). BibT \(T_{E} X i n g\). Included in most \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) distributions.
RefWorks. Web-based reference manager. url: http://www.refworks-cos.com/.
\(R u G T_{E} X / L a T e X\) installation, homepage. URL: http://tex. aanhet.net/rugtex/.

Shell, Michael and David Hoadley (2007). BibTEX tips and FAQ. url: http://mirror .ctan. org/biblio/bibtex/contrib/doc/btxFAQ.pdf.

Tantau, Till, Joseph Wright, and Vedran Miletić (2011). The BEAMER class. Published as part of the beamer package.
TeXstudio. URL: http://texstudio. sourceforge.net/.
TUG, TEX Users Group. urL: http://www.tug.org.
Zotero. Firefox extension for collecting and managing references. URL: http://www.zotero. org/.```

[^0]: 1. This last topic is no longer part of the course, but when you start using $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ for real, it is highly advisable to learn the $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ bibliography system.
[^1]: 3. This is a preamble generated by the TeXstudio Quick Start wizard.
[^2]: 1. Alternative codings: $\backslash(\ldots$) or \backslash begin\{math\} \ldots \end\{math\}.
[^3]: 1. Actually, dcolumn already loads array so there is no real need to load array explicitly.
[^4]: 1. If you need more control over the eps to pdf conversion, or need conversion the other way, or need to crop margins, have a look at epspdftk, available as the PostScript- and pdf conversions utility in the Utilities submenu of the RuG $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live menu, and at its command-line back end epspdf.
 2. To reduce file size, bitmapped images are usually compressed. For png this is done in a lossless way, i.e. the decompressed image and the original image contain identical information. Jpeg is compressed in a lossy way, i.e. information gets lost. However, jpeg compression works very well for photographic images, which can be reduced to 10% of their original file size without visible loss of quality.
[^5]: 3. You can copy-and-paste this code from the practice file float_sample.tex.
[^6]: 1. In section $5 \cdot 7$, we already encountered its ability to read OpenOffice spreadsheets.
[^7]: 1. LaTEX used to be more restrictive in this respect. Therefore, many old-time $\mathrm{La}_{\mathrm{E}} \mathrm{X}$ users still place the \bibliographystyle command right before the \bibliography command.
