
multiexpand
Trigger multiple expansions

in one expansion step∗

Bruno Le Floch†‡

Released 2013/01/08

Contents
1 Two user commands 1

2 How it works 2

3 Implementation 3

1 Two user commands
• For n > 0, expanding \MultiExpand{n}\macro twice gives the n-th

expansion of \macro.

• For n > 0, expanding \MultiExpandAfter{n}\macroA\macroB twice
expands \macroB n times before expanding \macroA.

Note that neither functions work for n = 0.
These can typically be combined as

\MultiExpand{7}%

∗This file describes version 1.1, last revised 2013/01/08.
†E-mail: blflatex@gmail.com
‡I have gathered ideas from various posts in the {TeX} community at http://tex.

stackexchange.com. Thanks to their authors.

1

http://tex.stackexchange.com
http://tex.stackexchange.com


\MultiExpandAfter{4}\a\MultiExpandAfter{7}\b%
\MultiExpandAfter{3}\c\d

which would expand \d 3 times, then \c 5 times (2 of the 7 times were used
to expand \MultiExpandAfter{3}), then \b twice (4−2), and finally \a five
times (7−2). Note that all this happens in precisely two steps of expansion.

In some cases, one needs to achieve the same effect in one step
only. For this, we use the first expansion of \MultiExpand, which
is \romannumeral \multiexpand, or of \MultiExpandAfter, which is
\romannumeral \multiexpandafter). Expanding \romannumeral \multiexpand{n}
once expands the following token n times, and similarly for \romannumeral
\multiexpandafter{n}.

These are especially useful when we want to expand several times a very
specific token which is buried behind many others. Example: expanding the
following code twice,

\MultiExpand{3}\expandafter\macroA\expandafter\macroB%
\romannumeral\multiexpandafter{4}\macroC\macroD

will expand \macroD 4 times, then will expand \macroA 2 = 3−1 additional
times.

Note: as we mentionned, this breaks for n = 0. But in this case, consider
using \expandafter\empty, or a variant thereof.

2 How it works
The primitive \romannumeral expands what follows fully until it builds a full
number. It will remove exactly one trailing space if the first non-digit token is
a space. So if we expand the construction \romannumeral0\expandafter\space
once, then \romannumeral will see the 0, and expand \expandafter: it can-
not yet be sure that it won’t find another digit afterwards. This expands
the next token once. In other words, \romannumeral0\expandafter\space
behaves as if it was not there.

This is how we end our loop. Namely, \multiexpand{〈n〉} checks if
n < 2, in which case it stops with 0\expandafter\space. If n ≥ 2, then it
simply expands to \multiexpand{〈n−1〉}, plus the relevant \expandafters
meant to expand the next token once.1

1Note to self: Possible optimization: put three \expandafter rather than one at the

2



3 Implementation
1 〈∗package〉

We work inside a group, to change the catcode of @. So we will only do
\gdefs. We also define a macro \ME@use.
2 \begingroup
3 \catcode‘\@=11\relax%
4 \gdef\ME@use#1{#1}%

\MultiExpand and \MultiExpandAfter are simply shorthands to avoid
typing \romannumeral. Drawback: they require two steps of expansion
rather than only one.
5 \gdef\MultiExpand{\romannumeral\multiexpand}%
6 \gdef\MultiExpandAfter{\romannumeral\multiexpandafter}%

The \romannumeral is stopped by 0\space. We insert the relevant
\expandafter to do the work.
7 \xdef\ME@endroman#1{0\noexpand\expandafter\space}%
8 \xdef\ME@endroman@after#1{0\noexpand\expandafter\space\noexpand\expandafter}%

9 \long\gdef\multiexpand#1{%
10 \ifnum#1<2 \expandafter \ME@endroman%
11 \else \expandafter \ME@use%
12 \fi%
13 {\expandafter \multiexpand \expandafter {%
14 \number\numexpr#1-1\expandafter}}%
15 }%

Almost identical definitions for expanding after...
16 \long\gdef\multiexpandafter#1{%
17 \ifnum#1<2 \expandafter\ME@endroman@after%
18 \else \expandafter \ME@use%
19 \fi%
20 {\expandafter \multiexpandafter \expandafter {%
21 \number\numexpr#1-1\expandafter}\expandafter}%
22 }%

Close the group.
23 \endgroup

24 〈/package〉

end, to to two expansions at once.

3


	Two user commands
	How it works
	Implementation

