
The multirow, bigstrut and bigdelim packages
Piet van Oostrum∗

Øystein Bache
Jerry Leichter†

February 27, 2010

1 Introduction
These packages offer a series of extensions to the standard LATEX tabular environment. Their
respective functions are:

multirow which provides a construction for table cells that span more than one row of the table;

bigdelim which creates an appropriately-sized delimiter (for example, brace, parenthesis or
bracket) to fit in a single multirow, to indicate a relationship between other rows; and

bigstrut which creates struts which (slightly) stretch the table row in which they sit.

2 Using multirow
The basic syntax is:

\multirow{nrows}[bigstruts]{width}[fixup]{text}

where

nrows is the number of rows to span. It’s up to you to leave the other rows empty, or the
stuff created by \multirow will over-write it. With a positive value of nrows the spanned
columns are this row and (nrows-1) rows below it. With a negative value of nrows they are
this row and (1-nrows) above it.

bigstruts is mainly used if you’ve used the bigstrut. In that case it is the total number of uses
of \bigstrut within the rows being spanned. Count 2 uses for each \bigstrut, 1 for each
\bigstrut[x] where x is either t or b. The default is 0.

width is the width to which the text is to be set, or * to indicate that the text argument’s
natural width is to be used.

text is the actual text of the construct. If the width was set explicitly, the text will be set in a
\parbox of that width; you can use \\ to force linebreaks where you like.
If the width was given as * the text will be set in LR mode. If you want a multiline entry
in this case you should use a tabular or array environment in the text parameter.

∗catalogued “active author”
†Documentation put together by Robin Fairbairns

1

fixup is a length used for fine tuning: the text will be raised (or lowered, if fixup is negative) by
that length above (below) wherever it would otherwise have gone.

For example (using both multirow and bigstrut):
\newcommand{\minitab}[2][l]{\begin{tabular}{#1}#2\end{tabular}}
\begin{tabular}{|c|c|}
\hline
\multirow{4}{1in}{Common g text} & Column g2a\\

& Column g2b \\
& Column g2c \\
& Column g2d \\

\hline
\multirow{3}[6]*{Common g text} & Column g2a\bigstrut\\\cline{2-2}

& Column g2b \bigstrut\\\cline{2-2}
& Column g2c \bigstrut\\

\hline
\multirow{4}[8]{1in}{Common g text} & Column g2a\bigstrut\\\cline{2-2}

& Column g2b \bigstrut\\\cline{2-2}
& Column g2c \bigstrut\\\cline{2-2}
& Column g2d \bigstrut\\

\hline
\multirow{4}*{\minitab[c]{Common \\ g text}} & Column g2a\\

& Column g2b \\
& Column g2c \\
& Column g2d \\

\hline
\end{tabular}

which will appear as:

Common g text

Column g2a
Column g2b
Column g2c
Column g2d

Common g text
Column g2a
Column g2b
Column g2c

Common g text

Column g2a
Column g2b
Column g2c
Column g2d

Common
g text

Column g2a
Column g2b
Column g2c
Column g2d

If any of the spanned rows are unusually large, or if you’re using the bigstrut and \bigstruts
are used asymetrically about the centerline of the spanned rows, the vertical centering may not
come out right. Use the fixup argument in this case.

2

Just before text is expanded, the \multirowsetup macro is expanded to set up any special
environment. Initially, \multirowsetup contains just \raggedright. It may be redefined with
\renewcommand.

It’s just about impossible to deal correctly with descenders. The text will be set up centred,
but it may then have a baseline that doesn’t match the baseline of the stuff beside it, in particular
if the stuff beside it has descenders and text does not. This may result in a small misalignment.
About all that can be done is to do a final touchup on text, using the fixup optional argument.
(Hint: If you use a measure like .1ex, there’s a reasonable chance that the fixup will still be
correct if you change the point size.)

\multirow is mainly designed for use with table, as opposed to array, environments. It
will not work well in an array environment since the lines have an extra jot of space between
them which it won’t account for. Fixing this is difficult in general, and doesn’t seem worth it.
The bigstruts argument may be used to provide a semi-automatic fix: First set \bigstrutjot to
.5\jot. Then simply repeat nrows as the bigstruts argument. This will be close, but probably
not exact; you can use the fixup argument to refine the result. (If you do this repeatedly, you’ll
probably want to wrap these steps up in a simple macro. Note that the modified \bigstrutjot
value will not give reasonable results if you have bigstruts and use this argument for its intended
purpose elsewhere. In that case, you might want to set it locally.)

If you use \multirow with the colortbl package you have to take precautions if you want to
colour the column that has the \multirow in it. colortbl works by colouring each cell separately.
So if you use \multirow with a positive nrows value, colortbl will first color the top cell, then
\multirow will typeset nrows cells starting with this cell, and later colortbl will color the other
cells, effectively hiding the text in that area. This can be solved by putting the \multirow in
the last row with a negative nrows value. See, for example:

\begin{tabular}{l>{\columncolor{yellow}}l}
aaaa & \\
cccc & \\
dddd & \multirow{-3}*{bbbb}\\

\end{tabular}

which will produce:

aaaa
cccc
dddd

bbbb

3 Using bigstrut
\bigstrut[x] produces a strut which is \bigstrutjot (2pt by default) higher, lower, or both
than the standard array/table strut. Use it in table entries that are adjacent to \hlines to
leave an extra bit of space—according to the TeXbook (page 246), “This is a little touch that
improves the appearance of boxed tables; look for it as a mark of quality.”

Although you could use \bigstrut in an array, there isn’t normally much point since arrays
are ‘opened up’ by \jot anyway.

\bigstrut[t] adds height; \bigstrut[b] adds depth. Just \bigstrut adds both. So:
Use \bigstrut[t] in the row just after an \hline; \bigstrut[b] in the row just before; and
\bigstrut if there are \hlines both before and after.

Spaces after the \bigstrut are ignored, even if it has an optional argument. Spaces before
the \bigstrut are generally ignored (by a single).

3

Note: The multirow package makes use of \bigstrutjot. If both styles are used, they can
be used in either order, as each checks to see if the other has already defined \bigstrutjot.
However, the default values they set are different: if only multirow is used, \bigstrutjot will
be set to 3pt. If bigstrut is used, with or without multirow, \bigstrutjot will be 2pt.

4 Using bigdelim
The package is for working in a table or array environment, in which the multirow packages is
also used.

Syntax of use is

\ldelim({n}{width}[text]
\rdelim){n}{width}[text]

The commands are used in a column of a tabular or array; they create a big parenthesis, brace
or whatever delimiter that extends over the n rows starting at the one containing the command.
Corresponding cells in the following rows must be explicitly given (as empty cells).

The first parameter is a delimiter to be used, e.g., \{ \} [] ()—in fact, anything that can
be used with \left or \right, as appropriate.

The optional text is set centred to the left of \ldelim or to the right of \rdelim. The width
is that reserved for the delimiter and its text; with a current copy of the multirow package, the
width may be given as *, but that may cause the delimiters to be too small.

Also with a recent version of multirow the commands may be used in the last row of the
extension with a negative n parameter. This is useful in combination with colortbl (see the
discussion in section 2 on multirow). If there are unusually tall rows you may have to enlarge n
(you can use non-integral values).

4

