
The manyfoot package∗

Alexander I. Rozhenko
rozhenko@oapmg.sscc.ru

2005/09/11

This package implements a command, \newfootnote, that adds footnote levels
to the standard LATEX’s footnote mechanism. Footnotes of every additional level
are automatically grouped together on a LATEX2ε output page and are separated
from another levels by the special vertical space and rule. The \newfootnote
command allows customization of the way footnotes of additional level are repre-
sented in LATEX2ε documents. Two customization styles are available now: the
plain style is the ordinary LATEX’s style of footnote representation; the para style
causes footnotes to be typeset as a run-in paragraph (derived from Donald Knuth’s
TEXbook and from another sources such as the package fnpara by Dominik Wu-
jastyk and Chris Rowley and the package footmisc by Robin Fairbairns).

An additional \DeclareNewFootnote command is introduced since the ver-
sion 1.5 of the package. It simplifies creation of new footnote levels with automatic
enumeration. Thanks to Frank Mittelbach for this suggestion and for many other
proposals for the package improvement.

Since version 1.5, a new footnote rule selection method is introduced (thanks to
Christian Tapp <chr.tapp@gmx.de> for the idea of this improvement). It allows
a customization of footnote rules to be inserted before footnote levels.

Contents

1 User Interface 2

2 Declaring New Footnotes 4

3 Custom Footnote Rules 5

4 Add Hooks at the Beginning of Footnotes 6

5 Per-page Footnotes Numbering 6

6 Splitting of Para-Footnotes 7

7 Footnotes within Minipages and Multicolumns 7
∗This file has version number v1.10, last revised 2005/09/11.

1

8 Compatibility with footmisc 8

9 Add Extra Skip for Para-Footnotes 8

10 The Implementation 9
10.1 Footnote Styles Support . 10
10.2 Plain Footnote Style . 11
10.3 Para Footnote Style . 11
10.4 Perpage Option . 16
10.5 Additional Footnotes Support . 16
10.6 The Basic Implementation Part . 20

10.6.1 Modifications of Output Routine 20
10.6.2 Minipages Support . 22
10.6.3 Multicol Package Support 23

10.7 What Do We Do at the Beginning of Document? 23

1 User Interface

Footnotes of different levels are separated at the output page by the special foot-\extrafootnoterule

note rule, \extrafootnoterule. By the default this command is empty. If you
want to separate footnotes by a footnote rule you may redefine it or call the
package with the ruled option:

\usepackage[ruled]{manyfoot}

In this case, the \extrafootnoterule receives a value of the default footnote rule
command.

The default footnote rule is saved in the \defaultfootnoterule command at\defaultfootnoterule

the beginning of document (we provide this for compatibility with the splitrule
option of the footmisc package).

The style para of footnotes typesetting needs many code. To save space, the
support for this style is loaded with para or para* options. If you are going to use
run-in paragraph footnotes indented as ordinary footnotes, use the package with
the para option:

\usepackage[para]{manyfoot}

To suppress indentation, use it with the para* option:

\usepackage[para*]{manyfoot}

Note, that these options only allow you to generate additional footnote levels in
para style. But what style you prefer for every footnote level is up to you. For
example, let as generate two footnote levels: the first—in ordinary style and the
second—in para style. To do this we have to write the following code in the
preamble of the document:

2

\usepackage[para]{manyfoot}
\newfootnote{A}
\newfootnote[para]{B}

The mandatory parameter of \newfootnote is a suffix to be added to the end of\newfootnote

command names generated by \newfootnote command. The optional parameter
is a customization style for generated footnote level (two styles now implemented,
named plain and para; the default is plain).

This example generates two commands, \FootnotetextA and \FootnotetextB,
for insertion of a text into corresponding footnote levels. Their syntax is the fol-
lowing:

\Footnotetext〈suffix 〉{〈marker〉}{〈inserted text〉}

They put the 〈inserted text〉 marked with 〈marker〉 into TEX’s insert register
\footins〈suffix 〉 (this insert is also generated by \newfootnote command). We
use the hand style of footnote marking, because the choice of how such footnotes
have to be marked is user’s one. Such a way simplifies the syntax of new commands
and minimize a number of additional commands needed.

It is clear that accompany to \Footnotetext〈suffix 〉 must present something\Footnotemark

\Footnotetext

\Footnote

like the hand footnote mark command. Such commands are provided by nccfoots
package which is automatically loaded in this package. Their syntax is the follow-
ing:

\Footnotemark{〈marker〉}
\Footnotetext{〈marker〉}{〈inserted text〉}
\Footnote{〈marker〉}{〈inserted text〉}

The first command is useful for all footnote levels. Two last commands are the
hand companions for LATEX’s \footnote... commands.

The question is what these commands have to do when 〈marker〉 is empty?
In such a case we leave the current marker unchanged. Therefore, \Footnote
command is equal to

\Footnotemark{〈marker〉}\Footnotetext{}{〈inserted text〉}

This is useful for \Footnotetext〈suffix 〉 commands in plain style. For para style
the empty 〈marker〉 means the footnote without marker (this is the special case
used for splitting long footnotes in para style; see below).

Finally, we explain1 on the previous examplei how to automate2 enumeration
of the additionalii footnote3 levelsiii (we have used in this sentence a number of
level’s A and B footnotes to show how this package works). Let us enumerate
the footnotes of A level by arabic numbers and the footnotes of B level by roman

1This is the first A-level footnote.
2The second A-footnote.
3The third A-footnote.

iThis is the first B-level footnote. iiThe second B-footnote. iiiThe third very very very
very very very very very very long B-footnote.

3

numbers. We allocate two new counters named footnoteA and footnoteB and
define the corresponding \footnote... commands with automatic enumeration.
The corresponding code is the following

\newcounter{footnoteA}
\newcommand{\footnoteA}{%

\stepcounter{footnoteA}%
\Footnotemark\thefootnoteA \FootnotetextA{}}

\newcounter{footnoteB}
\newcommand{\footnoteB}{%

\stepcounter{footnoteB}%
\Footnotemark\thefootnoteB \FootnotetextB\thefootnoteB}

\renewcommand{\thefootnoteB}{\roman{footnoteB}}

To produce footnotes presented here, we have done the following

Finally, we explain\footnoteA{This is the first A-level

footnote.} on the previous example\footnoteB{This is the first

B-level footnote.} how to automate\footnoteA{The second

A-footnote.} enumeration of the additional\footnoteB{The second

B-footnote.} footnote\footnoteA{The third A-footnote.}

levels\footnoteB{The third very very very very very very very

very very long B-footnote.}

2 Declaring New Footnotes

To create a new footnote level with automate enumeration, you need to type a\DeclareNewFootnote

bulk of code: create a new footnote level (e.g. \newfootnote{A}), create a counter
for automate enumeration (e.g. \newcounter{footnoteA}), and create a footnote
insertion command (e.g. \newcommand{\footnoteA}). All these things can be
automated with the \DeclareNewFootnote command used in the preamble only:

\DeclareNewFootnote[〈footnote style〉]{〈suffix 〉}[〈enumeration style〉]

Here 〈footnote style〉 is the customization style (plain is default) and 〈enumeration
style〉 is a style of numbering. This macro also prepares \footnotemark〈suffix 〉,
\footnotetext〈suffix 〉, \Footnotemark〈suffix 〉, and \Footnote〈suffix 〉 commands
for completeness. For example, the command \DeclareNewFootnote{A} creates
the following:

• The new plain footnote level with TEX’s insert register \footinsA;

• The counter footnoteA with arabic numbering;

• The command \FootnoteA{〈marker〉}{〈inserted text〉};

• The command \FootnotemarkA{〈marker〉};

• The command \FootnotetextA{〈marker〉}{〈inserted text〉};

4

• The command \footnoteA[〈number〉]{〈inserted text〉};

• The command \footnotemarkA[〈number〉]; and

• The command \footnotetextA[〈number〉]{〈inserted text〉}.

The first three \Footnote... commands work as their analogues without suf-
fix, and the behavior of three last commands is just the same as for ordinary
\footnote, \footnotemark, and \footnotetext. Examples of footnote controls
shown in the previous section can be easy specified in the following two lines:

\DeclareNewFootnote{A}
\DeclareNewFootnote[para]{B}[roman]

3 Custom Footnote Rules

A custom footnote rule can be specified for every new footnote level. Just store the\SelectFootnoteRule

\SelectFootnoteRule command before a new footnote declaration. Its syntax is
the following:

\SelectFootnoteRule[〈priority〉]{〈rule name〉}[〈action〉]

The 〈priority〉 is a nonnegative integer number specifying an importance of the
rule. It controls the process of a footnote rule selection while typeset (see more
detail description below). The default priority is 0. The 〈rule name〉 is a prefix
of the footnote rule command to be used before the next footnote level. The
command \〈rule name〉footnoterule is used as a footnote rule. The 〈action〉
parameter specifies an additional action to be applied just before the next footnote
group if it is nonempty (for example, an action can produce a marginal mark near
the footnote group). The default action is empty. A footnote rule and an action
must insert a material of zero height in vertical mode.

Two footnote rule commands are predefined: \extrafootnoterule and
\defaultfootnoterule. The \extrafootnoterule is selected with zero prior-
ity before a new footnote level if no other footnote rule was selected with the
\SelectFootnoteRule command. The \defaultfootnoterule is usually equal
to the \footnoterule, but if the \footnoterule was redefined in the footmisc
package with the splitrule option, the \defaultfootnoterule will save the
original value of the footnote rule. So, if you want to select an ordinary footnote
rule for the next footnote level, use the following command

\SelectFootnoteRule{default}

The following example create four footnote levels with rule inserted between foot-
notes A,B and C,D:

\DeclareNewFootnote{A}
\DeclareNewFootnote[para]{B}[alph]
\SelectFootnoteRule[1]{default}
\DeclareNewFootnote{C}[roman]
\DeclareNewFootnote{D}[Roman]

5

To use more custom footnote rules, you must create corresponding commands in
some way.

The algorithm of footnote rule insertion while a page output is the following:

• At first, we set the \defaultfootnoterule to be the current rule. Then we
test the insert register of the standard footnote group. If it is empty, we set
the priority of current rule to 1, otherwise to -1 (-1 means that this rule is
already played).

• After that, we do the following for every next footnote group. We compare
the priority of current rule and the priority of rule linked with the next
footnote group. If the current priority is less or equal to the next priority,
the current rule is changed to the next rule and the current priority is set to
the next priority. Then we test an insert register of the next footnote group.
If this footnote group is nonempty, we insert the current rule before it and
decrease the current priority to -1 (played rule).

The priority for the rule of standard footnote group is specified in the\footnoterulepriority

\footnoterulepriority command. Its default value is 1 (this means that the
standard footnote rule is more important then every next rule of 0th priority).
You can redefine this priority with the \renewcommand.

4 Add Hooks at the Beginning of Footnotes

Since version 1.9, a new command \SetFootnoteHook{〈text〉} is introduced. This\SetFootnoteHook

command is used before a new footnote declaration and specifies an action applied
for such footnotes.

If the new footnote level is plain, the hook is applied at the beginning of every
its footnote. For example, the following declaration specifies A-footnotes with
hang numbering:

\SetFootnoteHook{\hangindent=1.8em\noindent}
\DeclareNewFootnote{A}

For para-footnotes, the hook is applied in the output routine after merging all
para-footnotes together. The following declaration specified B-footnotes starting
with the word “Cases:” typeset in boldface:

\SetFootnoteHook{\noindent\textbf{Cases:}\quad}
\DeclareNewFootnote[para]{B}[alph]

5 Per-page Footnotes Numbering

The per-page resetting of counters can be implemented with the perpage package
by David Kastrup. For example, if you need to reset the footnoteA counter every
page, just insert the following in the preamble of you document (after declaring
the footnote level A of course):

6

\usepackage{perpage}
\MakePerPage{footnoteA}

If all new footnote levels declared with the \DeclareNewFootnote command must
reset every page, use the perpage option:

\usepackage[perpage]{manyfoot}

In this case, the perpage package is loaded automatically and the \MakePerPage
command is applied to every counter created with the \DeclareNewFootnote.

6 Splitting of Para-Footnotes

The algorithm proposed by Donald Knuth for processing run-in paragraph foot-
notes has some shortages. Namely, small overfulls of output page frequently arise
and the automatical splitting of long footnotes is impossible. First bug is corrected
here (look at the implementation section below), but the second one couldn’t be
easily eliminated.

To split a long footnote near the end of the output page we propose the fol-\SplitNote

lowing method. You should decide where the splitting have to be done. Then
you split footnote “by hands” into two parts. You leave the first part at the same
position in the text and complete its text by the command \SplitNote. You move
the second part down in the source file and attach it to any text corresponding to
the next page via the \Footnotetext... command with the empty marker. E.g.
you source text will look as follows:

This text goes on the current

page\footnoteB{This is the beginning of the long

footnote ... the splitting must be here\SplitNote}

...

This text goes on the next

page\FootnotetextB{}{and the end of the split

footnote is here ...}

If both parts of split footnote get into the same output page, the splitting is
ignored.

7 Footnotes within Minipages and Multicolumns

If you attach an additional level footnote to some text inside a minipage, it will
appear at the bottom of the page nor the minipage.

The package correctly works together with multicol package and gives good
results when switching between one and two columns by LATEX’s commands
\twocolumn and \onecolumn.

7

8 Compatibility with footmisc

The footmisc package also provides the para option. You cannot use this option
with footmisc if you plan to use it (or para*) with manyfoot.

The footnote margins management from the footmisc package acts on the
manyfoot also, but with some limitations concerning to footnotes in the para
style:

• If the manyfoot package is loaded with the para* option, the margin man-
agement options of the footmisc package have no influence on additional
footnotes of manyfoot in para style.

• If the manyfoot package is loaded with the para option, the margin manage-
ment options flushmargin and hang of the footmisc package appropriately
change the indentation of para footnotes created with the manyfoot pack-
age. More exactly, a nonnegative value of the \footnotemargin is taken into
account in this case. But if a width of the starting footnote marker becomes
greater than 0.8em, the hang indentation of such footnote will exceed the
value of \footnotemargin.

Footnotes having the plain style inherit all formatting specified in the footmisc,
because they use the standard \@makefntext hook.

9 Add Extra Skip for Para-Footnotes

The algorithm used for calculation the vertical space occupied with para-footnotes
has one serious disadvantage. It cannot exactly calculate how many vertical space
the collected para-footnotes will occupy because the formatting of such footnotes
in vertical box is applied in the output routine after TEX decides on page breaking.
For example, if collected para-footnotes occupy 2.25 lines, the algorithm reserves
the vertical space of 2.25\normalbaselineskip for them, but when such footnotes
will be formatted in vbox, 3 lines will be necessary of course. This is the reason why
the use of para-footnotes can lead to page overfull. To compensate this overfull we
use a special trick: we add a special space to a value of skip for all insert registers
taking part with para-inserts. When the insertions are formatted in the output
routine, the adjusted space is turned back. So, the additional space appears and
the overfull disappears.

The value of space to be adjusted is calculated as follows:

max(\footnotesep-\height\strut,0)+0.5\normalbaselineskip

We take into account here that the value of \footnotesep can be larger than the
height of \strut and the total height of para-footnotes is less than the required
height by 0.5\baselineskip on the average.

Sometimes, the assumptions on the required extra space are wrong and\ExtraParaSkip

footnotes can overlap on the text (this situation can occur in long tables).
So, the new command, \ExtraParaSkip{〈space〉}, was introduced since version

8

1.7 (by the proposal of Uwe Lück <ednotes.sty@web.de> and Florian Kragl
<a9902976@unet.univie.ac.at>) to adjust the default extra space. The com-
mand can be used in the preamble only. It can be used more than once. The later
use of the command overrides the previous one.

10 The Implementation

First we load nccfoots package, containing hand footnote mark commands and
the command \NCC@makefnmark{〈marker〉} which generates marker in \@thefnmark
command.
1 〈∗package〉
2 \RequirePackage{nccfoots}

\extrafootnoterule Then we define the empty \extrafootnoterule command and implement ruled
option that sets the \extrafootnoterule to be equal to the \defaultfootnoterule.
The \defaulfootnoterule is later defined at the beginning of document. It is set
to the \pagefootnoterule if the last is specified or to the \footnoterule if not.
This trick provides the compatibility with the splitrule option of the footmisc
package in which the default \footnoterule is saved in \pagefootnoterule and
then redefined.
3 \newcommand{\extrafootnoterule}{}

4 \DeclareOption{ruled}{\def\extrafootnoterule{\defaultfootnoterule}}

\MFL@columnwidth

\MFL@floathook

We use the dimen \MFL@columnwidth instead of \columnwidth while producing
the footnote for insertion. We set this dimen to be equal to \columnwidth at
the beginning of document and within the \@floatplacement command. The
command \MFL@floathook does this job. Later, in para option, we’ll add to this
hook the resetting of the fudge factor.
5 \newdimen\MFL@columnwidth

6 \def\MFL@floathook{\MFL@columnwidth\columnwidth}

\MFL@insert The command \MFL@insert{〈insert register〉}{〈text〉} inserts the text to the in-
sert register and sets the standard splitting parameters. We let this command to
be equal \MFL@mpinsert when go into a minipage. To use this command after a
minipage we save its value in \MFL@realinsert command. To support multiple
option from footmisc we add the \FN@mf@prepare command from footmisc (sug-
gested by Frank Mittelbach).
7 \long\def\MFL@insert#1#2{%

8 \insert#1{\splittopskip\footnotesep \splitmaxdepth \dp\strutbox

9 \floatingpenalty\@MM #2%

10 }%

11 \FN@mf@prepare

12 }

13 \providecommand\FN@mf@prepare{}

14 \let\MFL@realinsert\MFL@insert

9

\MFL@applyhook The command \MFL@applyhook{〈insert register〉} applies a hook corresponding
to the given insert register.
15 \def\MFL@applyhook#1{\csname MFL@hook\string#1\endcsname}

10.1 Footnote Styles Support

Every additional footnote level has deal with its own insert register which is al-\MFL@start...

located by the \newfootnote command. This insert register is automatically
initialized with the same values as the \footins register. You can modify its
parameters and do something more in the command

\MFL@start〈style〉{〈insert register〉}

You must do all modifications globally, because this command is called within the
group. It is called at the beginning of the document for every footnote of such
style and is needed in the preamble only.

To put footnote into the insert register the command\MFL@fnote...

\MFL@fnote〈style〉{〈insert register〉}{〈marker〉}{〈inserted text〉}

is used. Note that you have to define it with \long modifier if you allow footnotes
consisting of a number of paragraphs. You have to use the macros \MFL@insert
and \MFL@columnwidth instead of \insert and \columnwidth.

And the last style customization command\MFL@process...

\MFL@process〈style〉{〈insert register〉}

is called within the output routine to prepare the box of the 〈insert register〉 for
joining it with another footnote inserts.

Do some comments on joining algorithm. It joins together all nonempty foot-
note insert boxes and puts the result into \footins box. Special vertical space and
footnote rule are added between every two neighboring nonempty inserts. This
space is defined by the skip value from the second neighbor. In other words the
skip of the 〈insert register〉 is the vertical space to be added between this insert and
any nonempty footnote insert coming before it in the list of footnote inserts. Note
that this skip can be modified while processing of the document (the multicol
package multiplies \skip and \count of \footins to the number of columns when
goes into multicolumns mode; we do the same with these parameters of all another
footnote inserts to provide the compatibility with multicol package).

This command adds the vertical space just before the \MFL@process... com-\MFL@skip

mand. The value of this space is also calculated in \@tempskipa. Note that this
command is inserted between vertical boxes in joining procedure. If processed box
is the first nonempty footnote box (\footins register and all registers going in
footins list before the processed insert are empty), the command \MFL@skip is
ignored.

10

10.2 Plain Footnote Style

\MFL@startplain

\MFL@fnoteplain

\MFL@processplain

It is very simple. The commands \MFL@startplain and \MFL@processplain do
nothing
16 \let\MFL@startplain\@gobble

17 \@onlypreamble\MFL@startplain

18 \let\MFL@processplain\@gobble

and the command \MFL@fnoteplain does near the same as the usual footnotetext
command.
19 \long\def\MFL@fnoteplain#1#2#3{\NCC@makefnmark{#2}%

20 \MFL@insert#1{\reset@font\footnotesize

21 \interlinepenalty\interfootnotelinepenalty

22 \hsize\MFL@columnwidth \@parboxrestore

23 \protected@edef\@currentlabel{\@thefnmark}%

24 \color@begingroup

25 \MFL@applyhook{#1}%

26 \@makefntext{%

27 \rule\z@\footnotesep\ignorespaces#3\@finalstrut\strutbox}%

28 \color@endgroup

29 }%

30 }

10.3 Para Footnote Style

\ifMFL@paraindent This style is too complicated. We load its commands optionally. First we de-
fine \ifMFL@paraindent command to switch between indented and non-indented
versions of para footnotes.
31 \newif\ifMFL@paraindent \MFL@paraindenttrue

Now we implement the para option.
32 \DeclareOption{para}{%

\footglue The \footglue skip is the horizontal space between footnotes in run-in paragraph.
It’s name goes from TEXbook (Appendix D. Dirty Tricks) and we don’t rename
this register. This gives us an additional protection from the usage this package
in the document where another package also provides footnotes in para style.
33 \newskip\footglue

Contrarily to footmisc package we initialize this skip in terms of the footnote size
(nor the normal size).
34 {\footnotesize \global\footglue=1em plus.3em minus.3em }

\SplitNote

\ifMFL@split

The switch MFL@split provides footnote splitting and the command \SplitNote
simply sets this switch to true.
35 \newif\ifMFL@split \MFL@splitfalse

36 \newcommand\SplitNote{\MFL@splittrue}

11

\MFL@startpara Now we prepare para support routines. The first is the starting routine.
37 \def\MFL@startpara#1{%

It adds to insert’s skip additional space \MFL@paraskip (it is non-stretchable and
is calculated at the beginning of the document).
38 \global\advance\skip#1\MFL@paraskip

Then we define the command named \MFL@split\footins〈suffix 〉 which saves
splitting information for the corresponding footnote level. While processing the
document this command will have the \MFL@applyhook{〈insert register〉} value
(without splitting) or \noindent value (with splitting).
39 \MFL@setsplit{#1}{\MFL@applyhook{#1}}%

40 }

41 \@onlypreamble\MFL@startpara

\MFL@fnotepara The next command inserts footnote into 〈insert register〉. We use Knuth’s trick to
inform the output procedure how many horizontal space occupy the footnote by
modifying its vertical size as fudgefactor × footnotebaselineskip where fudgefactor
is the ratio of footnotebaselineskip to \columnwidth. The real vertical size of such
footnote is not needed because the footnote is save in \hbox nor \vbox and while
processing to the run-in paragraph will be unboxed.

This footnote command is not \long because the \par command cannot be
used in \hbox. At the beginning we make footnote mark and set current label only
if footnote mark was nonempty. We use below the temporary switch @tempswa to
select the case of nonempty footnote mark.
42 \def\MFL@fnotepara#1#2#3{\let\@thefnmark\@empty

43 \NCC@makefnmark{#2}%

44 \MFL@insert#1{\reset@font\footnotesize

45 \ifx\@thefnmark\@empty \@tempswafalse \else

46 \@tempswatrue

47 \protected@edef\@currentlabel{\@thefnmark}%

48 \fi

49 \color@begingroup

Now we test the width of the footnote mark and if it less than 0.8em we calculate
in \@tempdima the difference between 0.8em and the natural width of the marker.
This horizontal space is inserted before the footnote mark. Why it is needed?
While the processing of para insert we set \parindent to 1em. And taking into
account that the marker width is at least 0.8em we obtain the distance at least
1.8em between the footnote text and the left margin. It is exactly the same
distance as for footnotes in plain style. Why we add this space using \hskip?
It should be removed when line will be broken at this point. We add this space
when the switch MFL@paraindent is true.
50 \if@tempswa

51 \setbox\@tempboxa\hbox{\@makefnmark}%

52 \ifMFL@paraindent

53 \@tempdima.8em \advance\@tempdima-\wd\@tempboxa

54 \ifdim \@tempdima<\z@ \@tempdima\z@ \fi

55 \else

12

56 \@tempdima\z@

57 \fi

58 \fi

59 \setbox\@tempboxa\hbox{%

60 \if@tempswa

61 \hskip\@tempdima\unhbox\@tempboxa\nobreak

62 \fi

Well. Now we insert the footnote text into hbox and test the MFL@split switch.
If it is true (splitting needed) we add at the end of text the special small penalty
-1. It will indicate us where the splitting needed. In false case we set penalty -10
and insert \footglue space.
63 \ignorespaces#3\unskip\strut

64 \ifMFL@split \penalty\m@ne\space \else

65 \penalty-10 \hskip\footglue

66 \fi

67 }%

And finally we use Knuth’s trick.
68 \dp\@tempboxa\z@ \ht\@tempboxa\MFL@fudgefactor\wd\@tempboxa

69 \box\@tempboxa

70 \color@endgroup

71 }%

72 }

\MFL@processpara This is the last procedure of para style which is called in the output routine. We
must reorganize the box of the 〈insert register〉 which is the “vbox of hboxes”.
73 \def\MFL@processpara#1{%

Firstly we redefine \MFL@skip command decreasing its skip by \MFL@paraskip.
74 \advance\@tempskipa -\MFL@paraskip

75 \edef\MFL@skip{\vskip\the\@tempskipa\relax}%

76 \setbox#1\vbox{%

Now we execute the first step of Knuth’s algorithm: convert the “vbox of hboxes”
to “hbox of hboxes”.
77 \unvbox#1\setbox\@tempboxa\hbox{}\MFL@makehhbox

The second step is unhboxing of all first level hboxes. After that we have the
normal hbox which can be easily converted to paragraph vbox.
78 \setbox\@tempboxa\hbox{\unhbox\@tempboxa\MFL@removehboxes}%

Now we set all needed parameters to prepare run-in paragraph. When we set
a \parindent, we do test on the compatibility with footmisc package. If this
package is in use, the \footnotemargin register is specified. To provide just
the same indent of the first line for para footnotes as for ordinary footnotes,
we calculate the par indent as \footnotemargin-0.8em (0.8em is the width of
marker going after). This calculation is executed in the only case of nonnegative
\footnotemargin value.
79 \footnotesize

80 \hsize\MFL@columnwidth \@parboxrestore

13

81 \ifMFL@paraindent

82 \@ifundefined{footnotemargin}%

83 {\parindent\footglue}%

84 {\parindent\footnotemargin\relax

85 \ifdim\parindent<\z@ \parindent\footglue

86 \else \advance\parindent -0.8em \fi}%

87 \fi

Then we call \MFL@split\footins〈suffix 〉 macro to set \noindent if it is needed
(this case occurs when the footnote was splitted at the previous page) or apply its
hook otherwise.
88 \csname MFL@split\string#1\endcsname

Here is the right place where \footnotesep rule have to be inserted.
89 \rule\z@\footnotesep

Finally, we convert prepared hbox to vbox and test the last penalty (it is the
penalty of the last para footnote inserted into this vbox). This penalty is -10
or -1. The case -1 means that the last footnote continues onto the next page
(splitting case; see the command \MFL@fnotepara). In this case we adjust the
last line of paragraph to the right margin and set \MFL@split\footins〈suffix 〉
macro to \noindent. Otherwise, we apply the hook as its default value.
90 \unhbox\@tempboxa\unskip

91 \ifnum\lastpenalty=\m@ne \parfillskip\z@

92 \MFL@setsplit{#1}{\noindent}%

93 \else

94 \MFL@setsplit{#1}{\MFL@applyhook{#1}}%

95 \fi

96 }%

97 }

\MFL@makehhbox This procedure converts “vbox of hboxes” to “hbox of hboxes”. Its implemen-
tation has minimal distinctions from the original code described in TEXbook.
We removed from it the initialization of the accumulating box (\@tempboxa) and
added a possibility some boxes in the list to be vboxes nor hboxes. Such vboxes
arises because while processing a minipage we put all internal footnotes into vbox
to prevent their splitting. We use the box 0 as the temporary box here.
98 \def\MFL@makehhbox{%

99 \loop\setbox\z@\lastbox \ifhbox\z@

100 \setbox\@tempboxa\hbox{\box\z@\unhbox\@tempboxa}%

101 \repeat

102 \ifvbox\z@ \unvbox\z@ \MFL@makehhbox \fi

103 }

\MFL@removehboxes This is an internal procedure described in TEXbook to unboxing “hbox of hboxes”.
104 \def\MFL@removehboxes{\setbox\@tempboxa\lastbox

105 \ifhbox\@tempboxa{\MFL@removehboxes}\unhbox\@tempboxa\fi

106 }

14

\MFL@setsplit This macro sets the value of \MFL@split\footins〈suffix 〉 macro.
107 \def\MFL@setsplit#1#2{%

108 \expandafter\gdef\csname MFL@split\string#1\endcsname{#2}%

109 }

Finally, we have to prepare something for work. We add to \MFL@floathook
the calculation of the fudge factor. Such a calculation is needed when we switch
between one and two columns by the standard LATEX commands. The original
Knuth’s version of the algorithm produces an overflow if \normalbaselineskip
greater or equal to 16pt. In version 1.10, the calculation was improved to remove
overflow. Now overflow appears when \normalbaselineskip is 64pt. I think it
will be enough for all applications. By the way, in ordinary cases the new version
calculates the fudge factor two times more accurate than the Knuth’s one.

110 \g@addto@macro\MFL@floathook{%

111 \begingroup

112 \footnotesize \@tempdima\normalbaselineskip

113 \multiply \@tempdima \@cclvi

114 \@tempdimb \columnwidth

115 \divide \@tempdimb \@cclvi

116 \divide \@tempdima \@tempdimb

117 \xdef\MFL@fudgefactor{\strip@pt\@tempdima}%

118 \endgroup

119 }

\MFL@paraskip The last trick is the calculation of \MFL@paraskip — the skip which has to be
added to the skip of all para style footnote inserts and then “turned back” while
preparing of run-in paragraph. Why it is needed? Two reasons. The first, the
value of \footnotesep may be larger than the height of \strut. And we nowhere
take into account this exceeding. The second, the total height of para footnotes is
less then the real height of the prepared run-in paragraph by 0.5\baselineskip
on the average. So we have to add it to the \skip register for the compensation.

\ExtraParaSkip I new command, \ExtraParaSkip{〈space〉}, is introduced here by the proposal of
Uwe Lück <ednotes.sty@web.de>. Using it, everyone can adjust a value of skip
to be added to all \skip registers of para-inserts.

120 \newcommand*\ExtraParaSkip[1]{%

121 \def\MFL@xparaskip{\advance\@tempdima#1\relax}%

122 }

123 \let\MFL@xparaskip\relax

124 \@onlypreamble\ExtraParaSkip

125 \@onlypreamble\MFL@xparaskip

We do calculations of the \MFL@paraskip at the beginning of the document.
126 \AtBeginDocument{%

127 \begingroup

128 \footnotesize

129 \@tempdima\footnotesep

130 \advance\@tempdima -\ht\strutbox

15

131 \ifdim\@tempdima<\z@ \@tempdima\z@ \fi

132 \advance\@tempdima.5\normalbaselineskip

133 \MFL@xparaskip % Add extra para skip

134 \xdef\MFL@paraskip{\the\@tempdima\relax}%

135 \endgroup

136 }

137 }

Finally, we implement para* option which suppresses indentation of para foot-
notes.

138 \DeclareOption{para*}{%

139 \@ifundefined{MFL@startpara}{\ExecuteOptions{para}}{}%

140 \MFL@paraindentfalse

141 }

10.4 Perpage Option

The perpage option just sets the true value for the MFL@perpage:
142 \newif\ifMFL@perpage \MFL@perpagefalse

143 \DeclareOption{perpage}{\MFL@perpagetrue}

Now we can process the package options:
144 \ProcessOptions\relax

After that, we test the MFL@perpage and load the perpage package on demand:
145 \ifMFL@perpage \RequirePackage{perpage}\fi

10.5 Additional Footnotes Support

\MFL@list We initialize the list of all additional footnote levels to be empty.
146 \def\MFL@list{}

Its items will have the form \@elt{〈style〉}〈insert register〉

\SelectFootnoteRule Next we implement the footnote rule selection command. It defines the \MFL@rule
command that is later used in the \MFL@newinsert command to specify accom-
pany footnote level rule.

147 \newcommand*{\SelectFootnoteRule}[2][0]{%

148 \edef\@tempa{\noexpand\MFL@selectrule{#1}{%

149 \expandafter\noexpand\csname #2footnoterule\endcsname}}%

150 \@ifnextchar[{\@tempa}{\@tempa[]}%

151 }

152 \def\MFL@selectrule#1#2[#3]{\def\MFL@rule{\MFL@joinrule{#1}{#2}{#3}}}

153 \SelectFootnoteRule{extra}% Set the default footnote rule

154 \@onlypreamble\SelectFootnoteRule

155 \@onlypreamble\MFL@selectrule

156 \@onlypreamble\MFL@rule

16

\SetFootnoteHook \SetFootnoteHook{〈hook〉} saves a hook in the internal command. When a new
footnote is created, this hook is applied to it.

157 \newcommand{\SetFootnoteHook}[1]{\def\MFL@footnotehook{\MFL@fhook{#1}}}

158 \@onlypreamble\SetFootnoteHook

159 \@onlypreamble\MFL@footnotehook

160 \SetFootnoteHook{}% Empty hook by default

\MFL@fhook \MFL@fhook{〈hook〉}{〈insert register〉} associates a hook with the given insert
register and resets the current hook.

161 \long\def\MFL@fhook#1#2{%

162 \expandafter\def\csname MFL@hook\string#2\endcsname{#1}%

163 \SetFootnoteHook{}%

164 }

165 \@onlypreamble\MFL@fhook

\newfootnote Then we implement the basic command which generates additional footnote levels.
166 \newcommand*{\newfootnote}[2][plain]{%

Firstly, we test the 〈style〉 to be valid.
167 \@ifundefined{MFL@fnote#1}{%

168 \PackageError{manyfoot}{Unknown footnote style #1}%

169 {Known styles are ‘plain’ and ‘para’\MessageBreak

170 (if the package was loaded with the para or para* option)}}{}%

Then we allocate and initialize a new insert
171 \expandafter\MFL@newinsert\csname footins#2\endcsname

generate \Footnotetext〈suffix 〉 and its hook
172 \edef\@tempa{\noexpand\newcommand

173 \expandafter\noexpand\csname Footnotetext#2\endcsname

174 {\expandafter\noexpand\csname MFL@fnote#1\endcsname{%

175 \expandafter\noexpand\csname footins#2\endcsname}}%

176 \noexpand\MFL@footnotehook{%

177 \expandafter\noexpand\csname footins#2\endcsname}%

178 }%

179 \@tempa

and finally add the description of this insert to the list of additional footnote
inserts.

180 \@cons\MFL@list{{#1}\csname footins#2\endcsname}%

181 }

182 \@onlypreamble\newfootnote

\MFL@newinsert The initialization of a new insert. A current rule selection command is linked with
the new insert by the insert count number.

183 \def\MFL@newinsert#1{\newinsert#1%

184 \expandafter\let\csname MFL@join\number #1\endcsname \MFL@rule

185 \SelectFootnoteRule{extra}% Reset to default rule again

186 \skip#1\skip\footins \dimen#1\dimen\footins \count#1\count\footins

187 }

188 \@onlypreamble\MFL@newinsert

17

\MFL@makemark All additional footnote mark commands with automatic numbering are based on
the following command:

\MFL@makemark{〈counter〉}{〈stepcounter〉}{〈command〉}[〈number〉]

This command tests an optional parameter and, if it exists, prepares the marker us-
ing the specified number. Otherwise, it at first executes the 〈stepcounter〉{〈counter〉}
command (it is either \stepcounter or \@gobble) and then makes a mark. Fi-
nally, it executes the 〈command〉 parameter. Check for multiple footnotes added
as suggested by Frank Mittelbach.

189 \def\MFL@makemark#1#2#3{%

190 \FN@mf@check

191 \@ifnextchar[{\MFL@xmkmark{#1}{#3}}{#2{#1}\MFL@mkmark{#1}{#3}}%

192 }

193 \providecommand\FN@mf@check{}

194 \def\MFL@xmkmark#1#2[#3]{%

195 \begingroup

196 \csname c@#1\endcsname #3\relax

197 \unrestored@protected@xdef\@thefnmark{\csname the#1\endcsname}%

198 \endgroup

199 #2%

200 }

201 \def\MFL@mkmark#1#2{\protected@xdef\@thefnmark{\csname the#1\endcsname}%

202 #2%

203 }

\DeclareNewFootnote Now we define the service command simplifying creation of footnotes in almost all
cases.

204 \newcommand*{\DeclareNewFootnote}[2][plain]{%

205 \@ifnextchar[{\MFL@declare{#1}{#2}}{\MFL@declare{#1}{#2}[arabic]}%

206 }

207 \def\MFL@declare#1#2[#3]{%

We start from creation a new footnote level:
208 \newfootnote[#1]{#2}%

Now we prepare the \@tempa command which will create other commands at the
end of macro. A counter creation command is prepared at first:

209 \edef\@tempa{\noexpand\newcounter{footnote#2}%

After that we prepare the redefinition of the enumeration style
210 \noexpand\renewcommand

211 \expandafter\noexpand\csname thefootnote#2\endcsname{%

212 \expandafter\noexpand\csname @#3\endcsname

213 \expandafter\noexpand\csname c@footnote#2\endcsname

214 }%

and specify the per-page resetting if necessary:
215 \ifMFL@perpage \noexpand\MakePerPage{footnote#2}\fi

18

Next we prepare the \footnote〈suffix 〉 command:
216 \noexpand\newcommand

217 \expandafter\noexpand\csname footnote#2\endcsname{%

218 \noexpand\MFL@makemark{footnote#2}{\noexpand\stepcounter}{%

219 \noexpand\@footnotemark

220 \noexpand\let\noexpand\@tempb\noexpand\@thefnmark

221 \expandafter\noexpand\csname Footnotetext#2\endcsname{%

222 \noexpand\@tempb

223 }%

224 }%

225 }%

After that we prepare the \footnotemark〈suffix 〉 command:
226 \noexpand\newcommand

227 \expandafter\noexpand\csname footnotemark#2\endcsname{%

228 \noexpand\MFL@makemark{footnote#2}{\noexpand\stepcounter}{%

229 \noexpand\@footnotemark

230 }%

231 }%

Then we prepare the \footnotetext〈suffix 〉 command:
232 \noexpand\newcommand

233 \expandafter\noexpand\csname footnotetext#2\endcsname{%

234 \noexpand\MFL@makemark{footnote#2}{\noexpand\@gobble}{%

235 \noexpand\let\noexpand\@tempb\noexpand\@thefnmark

236 \expandafter\noexpand\csname Footnotetext#2\endcsname{%

237 \noexpand\@tempb

238 }%

239 }%

240 }%

Finally, we provide suffixed equivalents for \Footnotemark and \Footnote com-
mands:

241 \noexpand\newcommand

242 \expandafter\noexpand\csname Footnotemark#2\endcsname{%

243 \noexpand\Footnotemark

244 }%

245 \noexpand\newcommand

246 \expandafter\noexpand\csname Footnote#2\endcsname[1]{%

247 \noexpand\Footnotemark{####1}%

248 \expandafter\noexpand\csname Footnotetext#2\endcsname{####1}%

249 }%

250 }%

And now all prepared commands are created:
251 \@tempa

252 }

253 \@onlypreamble\DeclareNewFootnote

254 \@onlypreamble\MFL@declare

19

\MFL@start This command executes the \MFL@start〈suffix 〉 command. It works at the pream-
ble of the document only once for every additional footnote level.

255 \def\MFL@start#1{\csname MFL@start#1\endcsname}

256 \@onlypreamble\MFL@start

10.6 The Basic Implementation Part

Now we have to build into LATEX2ε the support for additional footnote levels.
There are a number of points where the modifications should be done. We do
all real modifications at the beginning of the document. Here we prepare macros
needed.

10.6.1 Modifications of Output Routine

\MFL@joinnotes First point of modifications is the output routine. We choose the strategy of
joining of the additional footnotes with \footins at the points where it is really
needed. The procedure \MFL@joinnotes implements this job. It will be added
later to the beginning of \@makecol and \@doclearpage macros.1

Since version 1.5, the \MFL@joinnotes has a parameter — a command the
joining procedure is called before. We add a protection from double attempt for
joining and restore the \footnoterule after execution of the parameter com-
mand. The MFL@joined conditional command is used for this purpose. Another
improvement is concerned with the footnote rule customization procedure intro-
duced. We now manage the footnote rule to be inserted before levels using the
priorities. The default priority for the standard \footnoterule is defined with
the \footnoterulepriority command.

257 \newcommand{\footnoterulepriority}{1}

258 \newif\ifMFL@joined \MFL@joinedfalse

259 \def\MFL@joinnotes#1{%

260 \ifMFL@joined #1%

261 \else

262 \let\MFL@savedrule \footnoterule

After saving a footnote rule we test the standard footnote insert, and prepare the
current footnote rule for additional levels.

263 \let\MFL@currule \defaultfootnoterule

264 \ifvoid \footins

265 \let\MFL@curpriority \footnoterulepriority

266 \else

267 \let\MFL@curpriority \m@ne

268 \fi

Now we join inserts.
269 \let\MFL@elt\@elt

1The version 1.2 of this package added this procedure to the beginning of \@specialoutput

instead of \@doclearpage. It was incorrect because the special output routine is often called to
add the next float to the output page without ejecting it. As a result the additional footnotes
disappeared before floats. Thanks to François Patte who found this bug.

20

270 \let\@elt\MFL@join \MFL@list

271 \let\@elt\MFL@elt

And finally, we process the parameter command and restore the \footnoterule.
272 \MFL@joinedtrue #1\MFL@joinedfalse

273 \let\footnoterule \MFL@savedrule

274 \fi

275 }

The insert joining procedure simply calls the numbered join command linked with
the insert.

276 \def\MFL@join#1#2{\csname MFL@join\number #2\endcsname{#1}{#2}}

The last one calls the \MFL@joinrule command with 5 parameters:

\MFL@joinrule{〈priority〉}{〈rule〉}{〈action〉}{〈style〉}{〈register〉}

First we select the rule comparing the priority of current rule and the new one.
277 \def\MFL@joinrule#1#2#3#4#5{%

278 \ifnum #1<\MFL@curpriority \else

279 \let\MFL@currule#2%

280 \def\MFL@curpriority{#1}%

281 \fi

282 \ifvoid#5\else

Well. The current insert is nonempty. At first, we calculate the skip of insert.
Within multicols environment it has the size multiplied in \col@number times
matching to its natural size. Therefore, we have to divide it by \col@number in
such a case.

283 \@tempskipa\skip#5%

284 \MFL@ifmcol{\divide\@tempskipa\col@number}{}%

285 \edef\MFL@skip{\vskip\the\@tempskipa\relax}%

Now we process the current insert by the style processing driver
286 \csname MFL@process#4\endcsname #5%

and finally we join it with \footins insert and decrease the current priority to
-1.

287 \ifvoid\footins

288 \let\footnoterule\MFL@currule

289 \setbox\footins\vbox{#3\unvbox#5}%

290 \else

291 \setbox\footins\vbox{%

292 \unvbox\footins\MFL@skip\MFL@currule#3\unvbox#5%

293 }%

294 \fi

295 \let\MFL@curpriority \m@ne

296 \fi

297 }

\MFL@reinsout When the special output is called to process float insertion, all accumulated foot-
notes should be reinserted after the output box. This job carries out \@reinserts

21

command. We will add to it the reinsertion of all additional footnotes with the
help of \MFL@reinsout macro. Note that \@reinserts command is called at two
points: when the float is the marginal note (\count\@currbox = 0) or when it
is the real float. At the second case we must take into account the height of all
additional footnotes by adding it to the \@pageht value.

298 \def\MFL@reinsout#1#2{\ifvoid#2\else

299 \ifnum\count\@currbox>\z@

300 \advance\@pageht \ht#2%

301 \advance\@pageht \skip#2%

302 \advance\@pageht \dp#2%

303 \fi

304 \insert#2{\unvbox#2}%

305 \fi

306 }

10.6.2 Minipages Support

\MFL@reinsert The command reinserts all additional footins by adding if necessary the empty
insertion (such a way is used in multicol). It is used in minipage and multicols
environments. The point of using it at a minipage is the beginning of the mini-
page. Using this command we release the additional footnote boxes to accumulate
footnotes inside the minipage.

307 \def\MFL@reinsert{{\let\@elt\MFL@reins \MFL@list}}

308 \def\MFL@reins#1#2{\ifvoid#2\else\insert#2{}\fi}

\MFL@mpinsert Here we define the minipage insertion command which manually adds vbox to
the insertion box. The last footnote within minipage can split. So, we specially
enclose it into vbox and unvbox the previous last footnote.

309 \long\def\MFL@mpinsert#1#2{%

310 \global\setbox#1\vbox{%

311 \unvbox#1\setbox\@tempboxa\lastbox

312 \ifvbox\@tempboxa \unvbox\@tempboxa \fi

313 \vbox{#2}%

314 }%

315 }

\MFL@mpreinsert This macro is useful when we really insert footnotes at the end of the minipage.
We suppress splitting of all minipage insertions except the last one. To do this we
extract the last box from the insertion box, then put another footnotes into the
insert enclosing them into vbox, and then put the last unvboxed footnote.

316 \def\MFL@mpreinsert#1#2{%

317 \ifvoid#2\else

318 \setbox\@tempboxa\vbox{\unvbox#2\global\setbox#2\lastbox}%

319 \setbox\z@\box#2%

320 \ifdim\ht\@tempboxa>\z@ \MFL@realinsert#2{\box\@tempboxa}\fi

321 \MFL@realinsert#2{\unvbox\z@}%

322 \fi

323 }

22

Then we define two hooks which will be added to the beginning and to the end of
a minipage. We do them in not inner mode only (for the first level minipages).

\MFL@minipage We release all box registers of the additional inserts at the beginning of minipage
to use them inside the minipage to accumulate inner inserts.

324 \def\MFL@minipage{%

325 \ifinner\else

326 \MFL@reinsert \let\MFL@insert\MFL@mpinsert

327 \fi

328 }

\MFL@endminipage We simply reinsert all footnotes at the end of the first level minipage.
329 \def\MFL@endminipage{%

330 \ifinner\else

331 {\let\@elt\MFL@mpreinsert \MFL@list}%

332 \fi

333 }

10.6.3 Multicol Package Support

\MFL@mult The command modifies parameters of the insert register. It is useful in the scope
of multicol package only.

334 \def\MFL@mult#1#2{%

335 \multiply\count#2\col@number

336 \multiply\skip#2\col@number

337 }

\MFL@ifmcol The next macro tests the multicolumn mode. There are two conditions which
have to be satisfied if we are in the multicolumn mode: the value of \col@number
should be greater then 1 and the value of \footins count should be at least 2000.

338 \def\MFL@ifmcol#1#2{\@tempswafalse

339 \ifnum\col@number>\@ne

340 \ifnum\count\footins>1999 \@tempswatrue \fi

341 \fi

342 \if@tempswa #1\else #2\fi

343 }

10.7 What Do We Do at the Beginning of Document?

344 \AtBeginDocument{%

Firstly, we process starting commands for every level
345 {\let\@elt\MFL@start \MFL@list}

Then we define the \defaultfootnoterule to provide compatibility with foot-
misc. We set it equal to \pagefootnoterule or \footnoterule.

346 \@ifundefined{defaultfootnoterule}{%

347 \@ifundefined{pagefootnoterule}%

348 {\let\defaultfootnoterule\footnoterule}%

23

349 {\let\defaultfootnoterule\pagefootnoterule}%

350 }{}%

Then we modify \@doclearpage and \@makecol commands by added the joining
algorithm at their beginning.

351 \let\MFL@doclearpage\@doclearpage

352 \def\@doclearpage{\MFL@joinnotes\MFL@doclearpage}

353 \let\MFL@makecol\@makecol

354 \def\@makecol{\MFL@joinnotes\MFL@makecol}

Then we modify \@reinserts command of the output routine to process reinser-
tion of all additional footnotes.

355 \g@addto@macro\@reinserts{%

356 \let\MFL@elt\@elt

357 \let\@elt\MFL@reinsout \MFL@list

358 \let\@elt\MFL@elt

359 }

Then we execute \MFL@floathook and add it into \@floatplacement command
which is called when the column mode is changed. One important note: in the
multicolumn mode of multicol package the width of footnotes is unchanged. So,
we test this case by the command \MFL@ifmcol.

360 \MFL@floathook

361 \g@addto@macro\@floatplacement{\MFL@ifmcol{}{\MFL@floathook}}

The next is the minipage environment. We modify \@iiiminipage and
\endminipage adding to them hooks describe earlier.

362 \let\MFL@iminipage\@iiiminipage

363 \def\@iiiminipage{\MFL@minipage\MFL@iminipage}

364 \g@addto@macro\endminipage\MFL@endminipage

Finally, we do some tricks to provide the compatibility with multicol package.
If this package is loaded, the command \multi@column@out should be defined

365 \@ifundefined{multi@column@out}

If it is undefined, the multicol specific commands are not useful. So, we delete
\MFL@mult command and modify \MFL@ifmcol command to choose the second
case every time.

366 {\@onlypreamble\MFL@mult \let\MFL@ifmcol\@secondoftwo}

If multicol package presents, we add the joining algorithm to the beginning of
\multi@column@out command

367 {\let\MFL@mcolout\multi@column@out

368 \def\multi@column@out{\MFL@joinnotes\MFL@mcolout}

and add the multiplication of additional footins parameters by the number of
columns to the end of \init@mult@footins command. We can’t do this globally.
So, we save the previous value of \@elt command and then restore it after the
calculation. We also modify \reinsert@footnotes command.

369 \g@addto@macro\init@mult@footins{%

370 \let\MFL@elt\@elt

371 \let\@elt\MFL@mult \MFL@list

372 \let\@elt\MFL@elt

373 }

24

374 \g@addto@macro\reinsert@footnotes{\MFL@reinsert}

375 }

376 }

377 〈/package〉

25

