The newunicodechar package*

Enrico Gregorio
Enrico dot Gregorio at univr dot it

November 12, 2012

1 Introduction

When using Unicode input with $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ it's not so uncommon to get an incomprehensible error message such as

Unicode char lu8:xxx not set up for use with LaTeX
where xxx may be the actual character we input or a combination of strange characters. This happens because the utf8 option given to inputenc or inputenx defines the $\mathrm{HAT}_{\mathrm{E}} \mathrm{X}$ meaning of many Unicode characters, but, of course, not all of them.

For example, one might want to write some Latin words with prosodic marks, i.e., the diacritics that tell whether a vowel is long or short, in order to distinguish between 'pŏpŭlus' (people) and 'pōpŭlus' (poplar), but using the actual Unicode characters that make the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ document easier to read; look at the following table, where on the left the input is via the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ Internal Character Representation (LICR) and on the right it's via Unicode characters,

LICR	Unicode
$p \backslash u\{o\} p \backslash u\{u\} l u s$	pŏpŭlus
$p \backslash=\{o\} p \backslash u\{u\} l u s$	$p o ̄ p u ̆ l u s$

and judge by yourselves which one is better. Unfortunately, the utf8 option to inputenc doesn't define a meaning for $\bar{\circ}, \bar{o}$, and \bar{u}. As a matter of fact, only $\overline{\mathrm{a}}$ and $\overline{\mathrm{A}}$ are defined, as they are used in the Romanian language.

One might resort to \DeclareUnicodeCharacter in the document's preamble, but this requires looking up at the (long) list of Unicode characters and jotting down the relevant numbers. For example, ö is $U+014 F$, so the declaration
\DeclareUnicodeCharacter\{014F\}\{\u\{o\}\}

[^0]would do for $\overline{\mathrm{o}}$.
The present package introduces a simpler interface that frees the user from the burden to look up in the tables: all it's needed is
\newunicodechar\{ŏ\}\{\u\{o\}\}
You are not restricted to definition like this: for example, 今 is Unicode $\mathrm{U}+266 \mathrm{~A}$, but you are not required to know it: if your editor can insert the character \curvearrowright, you may define its meaning by loading a package that provides it and say

```
\usepackage{wasysym}
\newunicodechar{৯}{\eighthnote}
```

A similar problem may arise even with $\mathrm{X}_{\mathrm{g}}{ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. A frequently asked question on mailing lists or discussion groups is how to print some particular character in a different font than the main one of the document, say, for example, the Euro sign which, in some fonts, is horrible. The usual answer is to write something like

```
\newfontfamily{\eurofont}{\langlesome font\rangle}
\catcode`€=\active
\protected\def €{{\eurofont\char'\€}}
```

which, for the average user, is somewhat scaring. With newunicodechar this may be simplified into

```
\newfontfamily{\eurofont}{\langlesome font\rangle}
\newunicodechar{€}{{\eurofont\texteuro}}
```


2 Usage

The package requires the use of a Unicode engine, i.e., $\mathrm{X}_{\mathrm{H}} \mathrm{LA}_{\mathrm{E}} \mathrm{EX}$ or $\mathrm{LuaLA}_{\mathrm{E}} \mathrm{X}$, or, with (pdf) $\operatorname{Le}^{A} \mathrm{E}_{\mathrm{E}} \mathrm{X}$, the inputenc or inputenx package along with the utf8 option. It won't work with the utf8x option that employs a completely different mechanism for parsing Unicode characters in (pdf)LETEX. It should be said that utf8x defines many more characters than utf8, so that the present package wouldn't be needed.

Of course the mathrm{IAT}_{\mathrm{E}}\mathrm{X}\)documentmustbewrittenusingaUnicodesavvyeditor.verboseThepackagehasonlyoneoption,verbose,whichisoffbydefault.Ifthepackageiscalledby\usepackage[verbose]\{newunicodechar\},thentheinformativemessageonthelogfilewillshowtheolddefinitionalongwiththewarningabouttheredefinition.Unfortunatelythisdefinitionusuallyhasarathercrypticformat;forexample,redefiningăwouldprintundefined

```
Redefining Unicode character; it meant
*** \IeC {\u a} ***
before your redefinition on input line 22.
```

Call the package with this option if you are worried about what you are redefining, but the meaning of the Unicode character should correspond easily to just one LICR entry. This option does nothing when a Unicode engine is used, because no character is active initially (except for \sim), so there should be non risk to redefine anything.
\newunicodechar
The package provides only one command, \newunicodechar, which must be called with two arguments:
\backslash newunicodechar $\{\langle$ char $\rangle\}\{\langle$ code $\rangle\}$
where $\langle c h a r\rangle$ is the Unicode character to which we need to give a meaning and〈code〉 is that meaning, that is the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ code that will be substituted to the character. Here is what's needed for the prosodic marks in Latin:

```
%\newunicodechar{\breve{A}}{\u{A}} \newunicodechar{ă}{\u{a}}
\newunicodechar{Ĕ}{\u{E}} \newunicodechar{\breve{e}}{\u{e}}
\newunicodechar{\breve{I}}{\u{I}} \newunicodechar{\`}{\u{\i}}
\newunicodechar{0̆}{\u{0}} \newunicodechar{ö}{\u{o}}
\newunicodechar{\breve{U}}{\u{U}} \newunicodechar{ŭ}{\u{u}}
\newunicodechar {\overline{A}}{\={A}} \newunicodechar{\overline{a}}{\={a}}
\newunicodechar{\overline{E}}{\={E}} \newunicodechar{\overline{e}}{\={e}}
\newunicodechar{\overline{I}}{\={I}} \newunicodechar{\overline{I}}{\={\i}}
\newunicodechar {\overline{0}}{\={0}} \newunicodechar{\overline{o}}{\={o}}
\newunicodechar{\overline{U}}{\={U}} \newunicodechar{\overline{u}}{\={u}}
```

The first line is commented out, because those characters are already defined. It doesn't hurt to give again a definition, $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ will just warn about it.

Caution: when used with $\mathrm{X}_{\mathrm{H}} \mathrm{AA}_{\mathrm{E}} \mathrm{X}$ or LuaIATEX, there will be no warning, but the standard setup doesn't define any active character.

The first argument must consist of a single Unicode character, but the package checks for it and raises an error otherwise; it will raise an error also if the first argument consists of a plain ASCII character: defining them is not allowed in

3 An easier way?

One could dispense with this package, since the same effect may be obtained in the way we have already seen in $\mathrm{X}_{\mathrm{g}} \mathrm{LA}_{\mathrm{E}} \mathrm{X}$ or LualATEX; with (pdf) $\mathrm{IAT}_{\mathrm{E}} \mathrm{A}$, calling \backslash newunicodechar $\{\bar{u}\}\{\backslash=\{u\}\}$ is equivalent to say
\backslash makeatletter
$\backslash @$ namedef $\{u 8: \backslash$ detokenize $\{\bar{u}\}\}\{\backslash=\{u\}\}$
\backslash makeatother

4 Implementation

The usual presentation, that we repeat here for completeness.

```
\ProvidesFile{newunicodechar.dtx}
\NeedsTeXFormat{LaTeX2e}[2008/04/05]
\ProvidesPackage{newunicodechar}
```

The date for the format has been chosen to match the last version of the utf8enc.dfu file that provides definitions for Unicode characters.

Now the real macros. First of all we check that the typesetting engine is sufficiently recent to include ε - $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ extensions.

```
1 \@ifundefined{eTeXversion}
    {\PackageError{newunicodechar}{LaTeX engine too old, aborting}
        {Please upgrade your TeX system}\@@end}{}
```


4.1 Options

There's only one option.

```
4\DeclareOption{verbose}{\let\nuc@verbose=T}
5\ProcessOptions\relax
```


4.2 Error messages

```
6\def\nuc@onebyteerr{\PackageError{newunicodechar}
    {ASCII character requested}
    {Only characters above U+007F may be defined; you asked
        for\MessageBreak a plain ASCII character and your definition
        has been ignored.}}
\def\nuc@emptyargerr{\PackageError{newunicodechar}
    {Empty argument}
    {You shouldn't write \protect\newunicodechar{}{...}}}
\def\nuc@invalidargerr{\PackageError{newunicodechar}
    {Invalid argument}
    {The first argument to \protect\newunicodechar\space is
        either\MessageBreak too long or an invalid sequence of bytes}}
```


4.3 Unicode engines

In case we are running a Unicode engine (xelatex or lualatex), the definition of the main macro is easier: we check whether the character is above 127 and, in this case, we make it active expanding to the second argument. This definition of the main macro will be seen only if the engine has the ${ }^{-\cdots \sim}$ convention for inputting characters in hexadecimal format, so that ~~~~0021 is one token and \@gobble will eat it up, making \next equal to \@empty; with an eight bit engine (latex or pdflatex), \@gobble will swallow only "~^.

In this case we define the main macro all in one swoop; first we check that the first argument is nonempty, then we act only if it consists of only one (character) token. Then if the charcode of this token is less than 127 we emit an error message; otherwise we activate the character and define its (protected) expansion to be the second argument. The last action, in this case, is to allow \newunicodechar only in the preamble. Then we do \endinput. If the engine is not Unicode savvy, everything up to the closing \fi is swallowed up.
\newunicodechar Here is the code for defining the Unicode engine version of the main macro. Notice that we try being on the safe side by not assuming any particular category code for \sim, because we restore it after giving the definition where we need it to be active.

```
\begingroup
\catcode`\`=7 \catcode30=12 \catcode'\!=12 % for safety
\ \edef\next{\@gobble^^^^0021}
\expandafter\endgroup
\ifx\next\@empty % Start of code for Unicode engines
\chardef\nuc@atcode=\catcode'\~
\catcode'\~=\active
\def\newunicodechar#1#2{%
    \if\relax\detokenize{#1}\relax
        \nuc@emptyargerr
    \else
        \if\relax\detokenize\expandafter{\@cdr#1\@nil}\relax
            \ifnum'#1>\string"7F
                \catcode`#1=\active
                \begingroup\lccode`\~=`#1
                    \lowercase{\endgroup\protected\def ~}{#2}%
                \else
                    \nuc@onebyteerr
                \i
        \else
            \nuc@invalidargerr
        \fi
    \fi}
\catcode`\~=\nuc@atcode
\@onlypreamble\newunicodechar
\expandafter\endinput
44 \fi % End of code for Unicode engines
```


4.4 Eight bit engines

From now on we can assume an eight bit engine is used; we check that inputenc or inputenx has been loaded with the right option, otherwise we define \newunicodechar to swallow its arguments, after a warning. We need to first check for inputenx because it loads inputenc.

```
\def\nuc@stop{\PackageWarningNoLine{newunicodechar}
    {This package won't work without loading\MessageBreak
        'inputenc' or 'inputenx' with the 'utf8' option}%
    \let\newunicodechar\@gobbletwo\endinput}
\@ifpackageloaded{inputenx}
    {\def\nuc@tempa{inputenx}}
    {\@ifpackageloaded{inputenc}{\def \nuc@tempa{inputenc}}{\nuc@stop}}
\@ifpackagewith{\nuc@tempa}{utf8}{}{\nuc@stop}
\@ifpackagewith{\nuc@tempa}{utf8x}{\nuc@stop}{}
```

\newunicodechar The main macro. We set the temporary switch to false and put in \nuc@tempa the first argument, but detokenized, since it consists of active characters. We
check that it's not empty and access to its first token that we put into \@tempb. Then we call \nuc@check and if it sets the temporary switch to true, we execute the definition, since the first argument is a valid UTF-8 character, but we issue a warning if it already has a meaning. All we need to do is to define the macro \csname u8:\nuc@tempa\endcsname, because that's how inputenc acts. The part between \ifdefined and the corresponding \fi will be executed only with the verbose option.

```
\def\newunicodechar#1#2{%
    \@tempswafalse
    \edef\nuc@tempa{\detokenize{#1}}%
    \if\relax\nuc@tempa\relax
        \nuc@emptyargerr
    \else
        \edef\@tempb{\expandafter\@car\nuc@tempa\@nil}%
        \nuc@check
        \if@tempswa
            \@ifundefined{u8:\nuc@tempa}{}
                    {\PackageWarning{newunicodechar}
                        {Redefining Unicode character\ifdefined\nuc@verbose;
                        it meant\MessageBreak
                        ***\space\space\nuc@meaning\space\space***\MessageBreak
                    before your redefinition\fi}}%
                \@namedef{u8:\nuc@tempa}{#2}%
        \i
    \i
2}
```

The first helper macro computes the number of bytes in the first argument, though it appears to the user as a single character. The third is used for the verbose option.

```
\def\nuc@getlength#1{%
    \ifx#1\@nil
        \expandafter\relax
    \else
        +1\expandafter\nuc@getlength
    \fi}
\ifdefined\nuc@verbose
    \def\nuc@meaning{\expandafter\expandafter\expandafter
        \strip@prefix\expandafter\meaning\csname u8:\nuc@tempa\endcsname}
\fi
```

We select the action based on the length of the first argument; in case only one byte appears, the user is trying to define an ASCII character, which is not allowed; if the input is two, three, or four bytes long, we check whether the first byte has the correct form: its binary form must be, respectively, 110xxxxx, 1110xxxx, or 11110 xxx , so not less than 192,224 , or 240 . The macro \backslash nuc@ch@ck does precisely this, issuing an error message if the argument is invalid or else setting the temporary switch to true.
$83 \backslash$ def \backslash nuc@check $\{\%$

```
\ifcase\numexpr0\expandafter\nuc@getlength\nuc@tempa\@nil
    \or %0
    \nuc@onebyteerr\or %1
    \nuc@ch@ck{192}\or %2
    \nuc@ch@ck{224}\or %3
    \nuc@ch@ck{240}\else %4
    \nuc@invalidargerr
\fi}
\def\nuc@ch@ck#1{%
    \expandafter\ifnum\expandafter'\@tempb<#1\relax
    \nuc@invalidargerr
    \else
    \@tempswatrue
    \fi
8}
```

Finally we disallow \newunicodechar outside the preamble.
99 \@onlypreamble\newunicodechar

Change History

```
v1.0
    v1.1
    General: Added support for
        inputenx . . . . . . . . . . . . 1, 5
    General: Initial version
1
```


Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols	\nuc@atcode 23, 41	\nuc@onebyteerr 6, 35, 86
~ 19	\nuc@ch@ck . . 87-89, 92	\nuc@stop . . $45,51-53$
~ $23,24,32,41$	\nuc@check 61, 83	\nuc@verbose . . 4, 65, 79
D ${ }_{\text {D }}$ \detokenize . . 26, 29, 56	```\nuc@emptyargerr 11, 27,58 \nuc@getlength 73,77,84```	\protected \quad P 33
N	\nuc@invalidargerr	
$\begin{aligned} & \text { \newunicodechar } 3,13 \text {, } \\ & 16, \underline{18}, 48, \underline{54}, 99 \end{aligned}$	$\begin{array}{r} \ldots . \quad 14,38,90,94 \\ \text { \nuc@meaning } \ldots 67,80 \end{array}$	$\begin{gathered} \text { V } \\ \text { verbose option } 2 \end{gathered}$

[^0]: *This document corresponds to newunicodechar v1.1, dated 2012/11/12.

