Chapter 1

Easy Problems

1.1. $y=\tan x$
1.2. $f(x)=g(x) \ln (g(x))$.
1.3. $y=\arctan x=\tan ^{-1} x$
1.4. $y=\arcsin (x)$
1.5. $y=(x+1) \ln (x+1)$.

Chapter 2

Probability Spaces

2.1. A coin is weighted so that heads is four times as likely as tails. Find the probability that: (a) tails appears, (b) heads appears
2.2. Under which of the following functions does $S=\left\{a_{1}, a_{2}\right\}$ become a probability space?
(a) $P\left(a_{1}\right)=\frac{1}{3}, P\left(a_{2}\right)=\frac{1}{2}$
(b) $P\left(a_{1}\right)=\frac{3}{4}, P\left(a_{2}\right)=\frac{1}{4}$
(c) $P\left(a_{1}\right)=1, P\left(a_{2}\right)=0$
(d) $P\left(a_{1}\right)=\frac{5}{4}, P\left(a_{2}\right)=-\frac{1}{4}$

Appendix A

Solutions

??

$$
\begin{aligned}
y & =\tan x \\
& =\frac{\sin x}{\cos x} \\
\frac{d y}{d x} & =\frac{\cos x}{\cos x}+\sin x \times \frac{-1}{\cos ^{2} x} \times-\sin x \\
& =1+\tan ^{2} x \\
& =\sec ^{2} x .
\end{aligned}
$$

??

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(x) \ln (g(x))+\frac{g(x)}{g(x)} g^{\prime}(x) \\
& =g^{\prime}(x)(1+\ln (g(x)))
\end{aligned}
$$

??

$$
\tan y=x
$$

diff w.r.t. x :

$$
\begin{aligned}
\sec ^{2} y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\sec ^{2} y} \\
& =\frac{1}{1+\tan ^{2} y} \\
& =\frac{1}{1+x^{2}}
\end{aligned}
$$

??

$$
\sin (y)=x
$$

diff. w.r.t. x :

$$
\begin{aligned}
\cos y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y} \\
& =\frac{1}{\sqrt{1-\sin ^{2} y}} \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

??

$$
\begin{aligned}
\frac{d y}{d x} & =\ln (x+1)+\frac{x+1}{x+1} \\
& =1+\ln (x+1)
\end{aligned}
$$

?? Let $p=P(T)$, then $P(H)=4 p$. We require $P(H)+P(T)=1$, so $4 p+p=1$, hence $p=\frac{1}{5}$. Therefore: (a) $P(T)=\frac{1}{5}$, (b) $P(H)=\frac{4}{5}$
?? ?? and ??

