
PythonTEX Quickstart
github.com/gpoore/pythontex

Installing
PythonTEX requires Python 2.7 or 3.2+.
PythonTEX is included in TeX Live 2013. It may

be installed via the package manager.
A Python installation script is included with the

package. It should be able to install the package in
most situations. Depending on the configuration of
your system, you may have to run the installation
script with administrative priviliges.

Detailed installation information is available in the
main documentation, pythontex.pdf.

Compiling
Compiling a document that uses PythonTEX involves
three steps: run LATEX, run pythontex.py, and finally
run LATEX again. You may wish to create a symlink
or launching wrapper for pythontex.py, if one was
not created during installation. PythonTEX is com-
patible with the pdfLaTeX, XeLaTeX, and LuaLaTeX
engines, so you can use latex, pdflatex, xelatex, or
lualatex. There are minor engine-specific differences;
see the main documentation for details.

The last two compile steps are only necessary when
code needs to be executed or highlighted. Otherwise,
the document may be compiled just like a normal
LATEX document; all output is cached.
PythonTEX is compatible with latexmk. Details

for configuring latexmk are provided in the main
documentation.

Basic commands
\py returns a string representation of its argument.
For example, \py{2 + 4**2} produces “18”, and
\py{’ABC’.lower()} produces “abc”. \py’s argu-
ment can be delimited by curly braces, or by a
matched pair of other characters (just like \verb).

\pyc executes code. By default, anything that is
printed is automatically included in the document (see
autoprint/autostdout in the main documentation).
For example, \pyc{var = 2} creates a variable, and
then its value may be accessed later via \py{var}: 2.

\pyb executes and typesets code. For example,
\pyb{var = 2} typesets var = 2 in addition to cre-
ating the variable. If anything is printed, it is

not automatically included, but can be accessed via
\printpythontex or \stdoutpythontex.

\pyv only typesets code; nothing is executed. For
example, \pyv{var = 2} produces var = 2.

Basic environments
There are pycode, pyblock, and pyverbatim environ-
ments, which are the environment equivalents of \pyc,
\pyb, and \pyv. For example,
\begin{pycode}
print(r’\begin{center}’)
print(r’\textit{A message from Python!}’)
print(r’\end{center}’)
\end{pycode}

produces
A message from Python!

The \begin and \end of an environment should
be on lines by themselves. Code in environments
may be indented; see the gobble option in the main
documentation for more details.

More commands/environments
All commands and environments described so far have
names beginning with py. There are equivalent com-
mands and environments that begin with sympy; these
automatically include
from sympy import *

There are also equivalent commands and environments
that begin with pylab; these automatically use mat-
plotlib’s pylab module via
from pylab import *

The sympy and pylab commands and environments
execute code in separate sessions from the py com-
mands and environments. This can make it easier to
avoid namespace conflicts.
There is also a pyconsole environment that emu-

lates a Python interactive console. For example,
\begin{pyconsole}
var = 1 + 1
var
\end{pyconsole}

1

https://github.com/gpoore/pythontex

yields

>>> var = 1 + 1
>>> var
2

Console variable values may be accessed inline via
the \pycon command. More console information is
available in the main documentation.

Working with Python 2
PythonTEX supports both Python 2 and 3. Un-
der Python 2, imports from __future__ will work
so long as they are the first user-entered code in a
given session. PythonTEX imports most things from
__future__ by default. To control what is automat-
ically imported, see the pyfuture and pyconfuture
package options in the main documentation.

Support for additional languages
PythonTEX also provides support for additional lan-
guages. Currently, Ruby, Julia, and Octave support
is included. To enable commands and environments
for these language, see the usefamily package option
in the main documentation.

Language support is provided via a template system;
in most cases, a new language can be added with about
100 lines of template code. If you would like support
for a new language, please open an issue at GitHub.
The main documentation also contains a summary of
the process for adding languages.

Macro programming
PythonTEX commands can be used inside other com-
mands in macro programming. They will usually work
fine, but curly braces should be used as delimiters and
special LATEX characters such as % and # should be
avoided in the Python code. These limitations can be
removed by passing arguments verbatim or through
catcode trickery. PythonTEX environments cannot
normally be used inside LATEX commands, due to the
way LATEX deals with verbatim content and catcodes.

Additional features
PythonTEX provides many additional features.
The working and output directories can be
specified via \setpythontexworkingdir and
\setpythontexoutputdir. The user can determine

when code is executed with the package option rerun,
selecting factors such as modification and exit status.
By default, all commands and environments with
the same base name (py, sympy, pylab, etc.) run in
a single session, providing continuity. Commands
and environments accept an optional argument that
specifies the session in which the code is executed;
sessions run in parallel. PythonTEX provides a
utilities class that is always imported into each
session. The utilities class provides methods for
tracking dependencies and automatically cleaning
up created files. The utilities class also allows
information such as page width to be passed from the
TEX side to Python/other languages. See the main
documentation for additional information.
PythonTEX also provides the depythontex util-

ity, which creates a copy of a document in which all
PythonTEX commands and environments have been
replaced by their output. The resulting document
is more suitable for journal submission, sharing, and
conversion to other document formats.
Code may be run in interactive mode via the

--interactive and --debug command-line options.
This is primarily useful for working with interactive
debuggers.

Unicode support
PythonTEX supports Unicode under all LATEX engines.
For example, consider the following example from
Python:
my_string = ’¥ § ß Ğ Ð Ñ Ö þ ø’
This requires some engine-specific packages. Typical
packages are listed below.

• pdfLaTeX:

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

• LuaLaTeX:

\usepackage{fontspec}

• XeLaTeX:

\usepackage{fontspec}
\defaultfontfeatures{Ligatures=TeX}

If you are using Python 2, you will also need to
specify that you are using Unicode. You may want
from __future__ import unicode_literals
at the beginning of your Python code. Or you can
just load the PythonTEX package with the option
pyfuture=all, which will import unicode_literals
automatically.

2

https://github.com/gpoore/pythontex

