
rubikrotation package; file = example-rot1.tex 1

Example 1

In Figure 1 we show the so-called “sixspot” configuration, generated from a
solved cube using the rotation sequence U, D′, R, L′, F, B′, U, D′(see the
website of Reid at www.math.ucf.edu/~reid/Rubik/).

Figure 1: The so-called ‘sixspot’ configuration (Reid).

\documentclass[a4paper]{article}

\usepackage{tikz,rubikcube,rubikrotation}

\thispagestyle{empty} %% disables pagenumbers

\begin{document}

\begin{tikzpicture}[scale=0.9]

\RubikCubeSolved

\RubikRotation{*sixspot,U,Dp,R,Lp,F,Bp,U,Dp}

\DrawRubikCubeFlat

\end{tikzpicture}

\end{document}

Note that a more flexible approach is to incorporate such rotation sequences
into a ‘newcommand’. For example, in this case we can write

\newcommand{\sixspot}{*sixspot,U,Dp,R,Lp,F,Bp,U,Dp}

which allows the code to Figure 1 to be more easily written as:

\begin{tikzpicture}

\RubikCubeSolved

\RubikRotation{\sixspot}

\DrawRubikCubeFlat

\end{tikzpicture}

rubikrotation package; file = example-rot1.tex 2

Example 2

In this example we show the use of the \ShowRubikErrors command, which
places a copy of the Perl output file (rubikstateERRORS.dat) underneath the
graphic so you can see a list of all the errors, if any (in this example we have in-
troduced a couple of errors). It is important to note that the \ShowRubikErrors
command must be placed after the TikZ picture environment. Note also that
full details of all errors are included in the .log file.

%% rubikstateERRORS.dat

** ERROR: rotation,*sixspot,U,Dp,R,Lp,F,Bp,UU,Dpp

** ERROR: [UU] in RubikRotation

** ERROR: [Dpp] in RubikRotation

Figure 2: The same ‘sixspot’ sequence of rotations as before, but now with some
typo errors in the rotation sequence (should be U,Dp,R,Lp,F,Bp,U,Dp.

Note that only ‘Draw’ commands really need to be inside the TikZ picture
environment—see the following code which we used for the above figure.

\RubikCubeSolved

\RubikRotation{*sixspot,U,Dp,R,Lp,F,Bp,UU,Dpp}

%

\begin{tikzpicture}

\DrawRubikCubeFlat

\end{tikzpicture}

\ShowRubikErrors

rubikrotation package; file = example-rot1.tex 3

Example 3

In this example we use the \RubikRotation command to scramble a ‘solved’
Rubik cube via a sequence of 120 random rotations, using the following com-
mand (the details of the process can be seen in the .log file):

\RubikRotation{random,120}

In this example, we also save the final configuration (state) to a file (exmpfig4.tex)
using the command \SaveRubikState{exmpfig4.tex} so we can display the
cube in the same state later (see Example 4) but in a different format. Note
that since we are using a random sequence, it follows that each time this file is
run not only will a visually different cube be generated, but the same state will
be shown in both Figures 3 and 4.

Figure 3: This shows a cube generated by 120 random rotations

\begin{figure}[hbt]

\centering

\begin{tikzpicture}[scale=0.8]

\RubikCubeSolved

\RubikRotation{random,120}

\SaveRubikState{exmpfig4.tex}

\DrawRubikFlat

\end{tikzpicture}

\end{figure}

rubikrotation package; file = example-rot1.tex 4

Example 4

In this example we display a cube having the same state as that shown in
Figure 3. The configuration state was saved from Figure 3 using the command
\SaveRubikState{exmpfig4.tex}, and then input here using \input{exmpfig4.tex}.
These commands therefore allow the state of a previous cube to be saved to a
file, and then displayed again later in a different format.

Figure 4: This shows a Rubik cube in exactly the same state as the one shown
in Figure 3

\begin{figure}[hbt]

\centering

\begin{tikzpicture}[scale=0.8]

\input{exmpfig4.tex}

\DrawRubikCubeLD

\end{tikzpicture}

\end{figure}

rubikrotation package; file = example-rot1.tex 5

Example 5

Here we show a convenient way of displaying a series of small cubes showing
a sequence of rotations (U, R, F). Following each rotation we save the state
to a file and then, finally, display each cube state in sequence, using a couple
of useful macros (\showcube, and \lift), to ‘show’ the cubes and to ‘lift’ the
rotation command slightly off the baseline. Note that embedding the TikZ
picture environment in the \showcube command brings considerable flexibility.

(a)
U

(b)
R

(c)
F

(d)

Figure 5: The rotations U, R, F on a solved cube.

Note that even though the \RubikCubeSolved command (which allocates
the colours to the ‘solved’ cube) is used prior to the TikZ picture environment,
its effects are still available to the \Draw... command inside each of the picture
environments.

\newcommand{\showcube}[1]{%

\begin{tikzpicture}[scale=0.5]

\input{#1}

\DrawRubikCubeRU

\end{tikzpicture}

}

\newcommand{\lift}[1]{\raisebox{8mm}{#1}\hspace{2mm}}

%%

\RubikCubeSolved \SaveRubikState{exmpfig5a.tex}

\RubikRotation{U} \SaveRubikState{exmpfig5b.tex}

\RubikRotation{R} \SaveRubikState{exmpfig5c.tex}

\RubikRotation{F} \SaveRubikState{exmpfig5d.tex}

%%

\begin{figure}[hbt]

\centering

\noindent \showcube{exmpfig5a.tex}\hspace{-4mm}(a)

\lift{\RubikU}\showcube{exmpfig5b.tex}\hspace{-4mm}(b)

\lift{\RubikR}\showcube{exmpfig5c.tex}\hspace{-4mm}(c)

\lift{\RubikF}\showcube{exmpfig5d.tex}\hspace{-4mm}(d)

\ShowRubikErrors

\caption{The rotations \rrU, \rrR, \rrF\ on a solved cube.}

\end{figure}

rubikrotation package; file = example-rot1.tex 6

Example 6

In this example we show how commands used inside a TikZ picture environment
remain local to that picture environment.

In this case the first fig uses the \RubikCubeSolved inside the TikZ en-
vironment. However, if we then perform the rotation R the command

RubikRotation{R} results in something quite unexpected (and obviously not
correct). This is because the effect of the \RubikCubeSolved command is not
visible outside its TikZ environment, and hence the RubikRotation{R} com-
mand has to operate on the state of the next earliest figure (ie Figure 5d),
hence the strange form of the second figure below.

R

Since we are not here using any ‘minipage’ environments, we need to use the
\lift{} command to raise the hieroglyph off the baseline.

\begin{tikzpicture}[scale=0.5]

\RubikCubeSolved

\DrawRubikCubeRU

\end{tikzpicture}

\hspace{5mm}\lift{\RubikR}\hspace{5mm}%

\RubikRotation{R}%

\begin{tikzpicture}[scale=0.5]

\DrawRubikCubeRU

\end{tikzpicture}

—— END ——

