
The rubikrotation package

RWD Nickalls (dick@nickalls.org)
A Syropoulos (asyropoulos@yahoo.com)

This file describes version 2.0, last revised 2014/01/20

Abstract

The rubikrotation package is an extension for the rubikcube package. It
provides the \RubikRotation command which processes on-the-fly a se-
quence of Rubik rotation moves (using the Perl script rubikrotation.pl)
and returns the new Rubik cube state. It implements some basic check-
ing of the Rubik state, and also offers a command for displaying any errors
(\ShowRubikErrors). This package requires access to the TEX write18 fa-
cility by using the --shell-escape commandline switch. The rubikrotation
package has been road-tested on a Microsoft platform (with MikTeX and
Strawberry Perl), on a Linux platform (TEXLive and Mandriva), and on
OpenIndiana (a Solaris platform).

Contents

1 Introduction 1

2 Requirements 2

3 Installation 2
3.1 Generating the files . 2
3.2 Placing the files . 2
3.3 Configuration file . 3

4 Usage 4
4.1 Enabling the TEX ‘shell’ facility . 4
4.2 Test files . 4

5 Commands 5
5.1 \RubikRotation command . 5

5.1.1 Arguments prefixed with a * 5
5.1.2 Random rotations . 7

5.2 \SaveRubikState . 7
5.3 \CheckRubikState command . 8
5.4 \ShowRubikErrors command . 8

1

6 Files generated 8

7 General overview 9

8 The code (rubikrotation.sty) 10
8.1 Package heading . 10
8.2 Some useful commands . 11
8.3 Configuration file . 11
8.4 Clean file rubikstateNEW.dat . 11
8.5 rubikstateERRORS.dat . 12
8.6 Setting up a newwrite and file-access for new files 12
8.7 Saving the Rubik state . 12
8.8 RubikRotation command . 13
8.9 ShowRubikErrors command . 13
8.10 CheckRubikState command . 13
8.11 SaveRubikState macro . 14

1 Introduction

The rubikrotation package is a dynamic extension to the rubikcube pack-
age. It consists of a style option (rubikrotation.sty) and a Perl script
(rubikrotation.pl).

The primary role of the rubikrotation package is to implement on-the-fly Ru-
bik rotation sequences using the \RubikRotation command. Consequently, this
package requires the use of the --shell-escape switch to allow commandline
control of the Perl script, which is really the ‘engine’ of this package. The rubikro-
tation package has been road-tested on a Microsoft platform (with MikTeX and
Strawberry Perl 1) and on a Linux platform (TEXLive and Mandriva).

The following commands are made available by rubikrotation.sty.

\RubikRotation{}

\SaveRubikState

\CheckRubikState

\ShowRubikErrors

Note that if the Perl script is not located in the local working directory, then some
care is needed regarding placing it where your system can both find it and also run
it. In this case, the setting up of a simple one or two-line configuration file may be
useful or even necessary, depending on your system (see section on ‘installation’
below).

2 Requirements

The rubikrotation package requires the TikZ and the rubikcube packages.

1‘Strawberry Perl’ (http://strawberryperl.com) is a free Perl environment for MS Windows,
designed to be as close as possible to the Perl environment of Unix/Linux systems.

2

3 Installation

3.1 Generating the files

Place the file rubikrotation.zip into a temporary directory, and unzip it. This
will generate the following files:

rubikrotation.ins

rubikrotation.dtx

rubikrotation.sty

rubikrotation.pl

rubikrotation.PDF

example-rot1.tex

example-rot1.PDF

example-rot2.tex

example-rot2.PDF

The style option rubikrotation.sty is generated by running (pdf)LATEX on the
file rubikrotation.ins as follows:

pdflatex rubikrotation.ins

The documentation file (rubikrotation.pdf) was generated using the following
steps:

pdflatex --shell-escape rubikrotation.dtx

pdflatex --shell-escape rubikrotation.dtx

makeindex -s gind.ist rubikrotation

makeindex -s gglo.ist -o rubikrotation.gls rubikrotation.glo

pdflatex --shell-escape rubikrotation.dtx

3.2 Placing the files

Place the files either in the local working directory, or where your system will find
them. For a Linux system with a standard TEX Directory Structure (TDS), then:

*.sty→ /usr/local/texlive/texmf-local/tex/latex/local/rubikrotation/

*.cfg→ /usr/local/texlive/texmf-local/tex/latex/local/rubikrotation/

*.pdf → /usr/local/texlive/texmf-local/doc/rubikrotation/

*.pl → /usr/local/bin/

Finally, (depending on your system) update the TEX file database using the
texhash command.

3.3 Configuration file

A plane text configuration file with the name rubikrotation.cfg (if one exists)
will be read by the system. Such a file allows the user to adjust (a) the filename
of the Perl script (rubikrotation.pl) and (b) the commandline code used by
rubikrotation.sty for calling the Perl script. This sort of fine-tuning is some-
times convenient, and even necessary (depending on your system), for locating

3

and running the Perl script. For example, on some systems it maybe preferable
to use a different path, file name and/or a different commandline code to call the
script.

The configuration file is essentially a convenient software vehicle for feeding\rubikperlname

\rubikperlcmd some additional LATEX code to the style option, and hence allow the contents of
some commands to be adjusted and/or fine-tuned. For the rubikrotation package
there are two particular commands we may wish to adjust. The first is that defin-
ing the filename of the Perl script, namely \rubikperlname. The second is that
defining the commandline call, namely \rubikperlcmd. The default definitions
for these (detailed in Section 8.2) are as follows:

\newcommand{\rubikperlname}{rubikrotation.pl}

\newcommand{\rubikperlcmd}{perl \rubikperlname}

For example, we might wish to test out a slightly modified Perl script, say with
the name rubikrotationV3.pl. In this case we simply create, in the local work-
ing directory, a plane text configuration file (called rubikrotation.cfg) which
includes the following line:

\renewcommand{\rubikperlname}{rubikrotationV3.pl}

Alternatively, say, if the Perl script is being installed on a Linux platform, then
it would be standard to install it in the directory /usr/local/bin. A convenient
approach in this case, therefore, would be to indicate this new path by including
the following line in the configuration file:

\renewcommand{\rubikperlname}{/usr/local/bin/rubikrotation.pl}

and, since this would then be an essentially permanent feature, we would then place
the configuration file with the style option in the texmf-local/... directory as
described in section 3.2 (placing files). Note that in this case, we have not made
the Perl script ‘executable’, since the default commandline code is effectively perl

rubikrotation.pl, and this works just as it is.
However, if the Perl script is made ‘executable’, then a different commandline

code will have to be used instead. For example, suppose the Perl script is made
executable and renamed to just rubikrotation (ie with no filename extension),
then we now have to omit the ‘perl’ from the default commandline. Consequently,
we now need to make two command changes, which we implement by including
the following two lines in the configuration file:

\renewcommand{\rubikperlname}{/usr/local/bin/rubikrotation}

\renewcommand{\rubikperlcmd}{\rubikperlname}

4 Usage

Load the packages rubikcube.sty and rubikrotation.sty in the TEX file after
loading the TikZ package, as follows:

\usepackage{tikz}

\usepackage{rubikcube,rubikrotation}

4

and run (pdf)LATEX using the --shell-escape commandline switch (see following
section).

4.1 Enabling the TEX ‘shell’ facility

In order to enable the TEX ‘write18’ facility (so it can run the Perl script) we will
need to invoke (pdf)LATEX using the --shell-escape switch; say, as follows.

pdflatex --shell-escape filename.tex

In practice, it is probably most convenient to run this via a bash/batch file—
something like the following, both of which automatically show the graphic output:

pdflatex --shell-escape filename.tex

xpdf filename.pdf

or

latex --shell-escape filename.tex

dvips filename.dvi

gv filename.ps

4.2 Test files

Two example tex files (which demonstrate the use of the package commands) are
included in the package, namely:

example-rot1.tex (shows 5 worked examples)

example-rot2.tex (is a ‘test’ file for experimenting with different commands)

These need to be run using --shell-escape switch; for example:

pdflatex --shell-escape example-rot1.tex

If the files give unexpected results, check-out the log file to see if the system has
had any difficulties finding files etc.

5 Commands

The only commands which must be used inside a TikZ picture environment are
the \Draw... commands (these are all provided by the rubikcube package),
although most commands can be placed inside a TikZ environment if necessary.
However, using commands outside the environment generally offers maximum flex-
ibility, since the effects of commands used inside a TikZ picture environment are
‘local’ to that picture environment, and are not therefore accessable outside the
environment.

The only command which must not be inside a TikZ environment is the
\ShowRubikErrors command (see the notes on this command below).

5

5.1 \RubikRotation command

The \RubikRotation{〈comma separated sequence〉} command processes a comma\RubikRotation

separated sequence of rotations, and returns the final state. For example, if we
wanted to see the effect of the rotations R, R, L, U, D on a solved Rubik cube,
we could use the following commands.

\begin{tikzpicture}[scale=0.7]

\RubikCubeSolved

\RubikRotation{R2,L,U,D}

\DrawRubikCubeRU

\end{tikzpicture}

The \RubikRotation command results in LATEX first writing the current Ru-
bik state to a text file (rubikstate.dat), and then calling the Perl program
rubikrotation.pl. The Perl program then reads the current rubik state from
the (rubikstate.dat) file, performs all the rotations, and then writes the new ru-
bik state (and any error messages) to the file rubikstateNEW.dat, which is then
input on-the-fly by the LATEX file and used to generate some graphic image of the
cube.

Note that the \RubikRotation command can be either inside or before the
Tikz picture environment. In fact only the ‘\Draw...’ commands (from the
rubikcube package) actually need to be inside a TikZ picture environment. Con-
sequently this makes for great flexibility.

5.1.1 Arguments prefixed with a *

If any of the comma separated arguments (strings) is prefixed with a * it is not
processed as a rotation. This feature therefore allows a string argument to be
used as a label, which can be very useful. For example, we can use the * feature
to label the following sequence as generating the so-called ‘sixspot’ configuration
(described by Reid):

\RubikRotation{*sixspot,U,Dp,R,Lp,F,Bp,U,Dp}

Alternatively, and probably more conveniently, we could simply use the name
‘sixspot’ to define a new command, as follows (which therefore allows one to store
lots of different rotation sequences by name alone):

\newcommand{\sixspot}{U,Dp,R,Lp,F,Bp,U,Dp}

With this ‘newcommand’ we are now able to generate the graphic (sixspot cube)
much more easily using the following code:

\begin{tikzpicture}[scale=0.7]

\RubikCubeSolved

\RubikRotation{\sixspot}

\DrawRubikCubeRU

\end{tikzpicture}

6

In practice, it is quite useful to go one step further and include the * label
feature as well in the newcommand, as follows:

\newcommand{\sixspot}{*sixspot,U,Dp,R,Lp,F,Bp,U,Dp}

since this has the great advantage of making the particular rotation sequence
identified by the label-name visible in the log file. For example, the following
command, which uses the rotations x2 and y to initially rotate the ‘solved’ cube
before applying the ‘sixspot’ sequence of rotations,

\RubikRotation{x2,y,\sixspot}

will then be represented in the log file as

...command=rotation,x2,y,*sixspot,U,Dp,R,Lp,F,Bp,U,Dp

...arguments passed to ‘rotation’ sub = x2 y *sixspot U Dp R Lp F Bp U Dp (n= 11)

...rotation x OK (= rrR + rrSr + rrLp)

...rotation x OK (= rrR + rrSr + rrLp)

...rotation y OK (= rrU + rrSu + rrDp)

...*sixspot is a label OK

...rotation U OK

...rotation Dp OK

...rotation R OK

...rotation Lp OK

...rotation F OK

...rotation Bp OK

...rotation U OK

...rotation Dp OK

In this way, several named rotation sequences can be easily distinguished in the
log file from adjacent rotation commands.

5.1.2 Random rotations

The \RubikRotation command can also be used to scramble the cube using a
random sequence of rotations. If the first argument is the lowercase word ‘random’
and the second argument is an integer n, (1 ≤ n ≤ 200), then a random sequence
of n rotations will be performed; otherwise a default value of 50 is used (for
example, if the second argument is not an integer). If n > 200 then the value
n = 200 will be used.

For example, the following commands will scramble a solved cube using a
sequence of 120 random rotations, and display the state in the form of a semi-flat
cube.

7

\RubikCubeSolved%

\RubikRotation{random,120}%

\begin{tikzpicture}[scale=0.5]

\DrawRubikCubeFlat

\end{tikzpicture}

Note that in this particular example (above), only the \Draw.. command is
inside the TikZ picture environment—a useful method when more than one figure
is being drawn. Note also, that when such commands are outside a TikZ picture
environment, they should have a trailing % to stop additional white space being
included.

The procedure is that all the possible rotations are first allocated a different
number (integer) and collected into an array. Then a sequence of n randomised
numbers is generated and mapped to the array to generate the associated sequence
of random rotations. The sequence used is detailed in the .log file.

5.2 \SaveRubikState

The command \SaveRubikState{〈filename〉} saves the state (configuration) of\SaveRubikState

the Rubik cube to the file {〈filename〉} in the standard \RubikFace... format.
Consequently such a file can then be input at a later stage so it can be drawn or
processed in the usual way (inside the TikZ picture environment).

For example, the following commands would save the so-called ‘sixspot’ con-
figuration (generated by the rotations U, Dp, R, Lp, F, Bp, U, Dp) to the file
sixspot.tex.

\RubikCubeSolved%

\RubikRotation{*sixspot,U,Dp,R,Lp,F,Bp,U,Dp}%

\SaveRubikState{sixspot.tex}%

The form of the file sixspot.tex will then be as follows—the filename (commented
out) is automatically written to the top of the file for convenience.

% filename: sixspot.tex

\RubikFaceUp{O}{O}{O}{O}{W}{O}{O}{O}{O}%

\RubikFaceDown{R}{R}{R}{R}{Y}{R}{R}{R}{R}%

\RubikFaceLeft{Y}{Y}{Y}{Y}{B}{Y}{Y}{Y}{Y}%

\RubikFaceRight{W}{W}{W}{W}{G}{W}{W}{W}{W}%

\RubikFaceFront{G}{G}{G}{G}{O}{G}{G}{G}{G}%

\RubikFaceBack{B}{B}{B}{B}{R}{B}{B}{B}{B}%

We can therefore access and draw this configuration later, when required, simply
by inputting the file as follows:

\begin{tikzpicture}

8

\input{sixspot.tex}

\DrawRubikCubeFlat

\end{tikzpicture}

5.3 \CheckRubikState command

Since it is easy to inadvertently define an invalid Rubik cube (eg enter an invalid\CheckRubikState

number of, say, yellow cubies), this command checks the current colour state of all
the cubies of a 3x3x3 Rubik cube, and shows the number of cubies of each colour.
An ERROR: code is issued if the number of cubies having a given colour exceeds
6. The results are written to the the .log file, and displayed under the graphic if
the \ShowRubikErrors command is used.

One can check the current Rubik state (for errors) by issuing the command

\CheckRubikState%

Note that such a check is implemented automatically with each \RubikRotation

command.

5.4 \ShowRubikErrors command

\ShowRubikErrors

Any errors which arise can be made visible using the command \ShowRubikErrors.
This command places a copy of the ‘error’ file (rubikstateERRORS.dat) under-
neath the image so you can see any errors if there are any—all this detail can also
be found in the .log file.

Consequently, this command must be placed after a TikZ picture environment—
it cannot be used inside a TikZ environment. In fact this command is probably
best placed at the end of the document (if there are several such environments),
where it will reveal all rotation errors generated while processing the document.

6 Files generated

Whenever the \RubikRotation or \CheckRubikState commands are used, three
small temporary plain text files for holding data are generated as follows (they are
refreshed with each LATEX run, and are not actively deleted).

• LATEX writes Rubik state data to the file rubikstate.dat.

• Perl reads the file rubikstate.dat and then writes the new rubik state to
the file rubikstateNEW.dat.

• Perl also writes error data to the file rubikstateERRORS.dat. A copy of this
file is displayed under the image when the command \ShowRubikErrors is
used after (outside) the TikZ picture environment.

9

7 General overview

When LATEX loads the rubikrotation package the following steps are implemented.

1. A check is made to see if fancyvrb.sty is loaded: if not then this package
is loaded if it is available (this package is required for inputting the file
rubikstateERRORS.dat).

2. A check is made to see if a configuration file (rubikrotation.cfg) exists:
if so then this file is input.

3. The text file rubikstateNEW.dat is overwritten (if it exists): otherwise the
file is created (this prevents an ‘old’ file being used by LATEX).

4. The plain text file rubikstateERRORS.dat is created. This file collects error
messages generated by the Perl script.

When a \RubikRotation command is processed it first writes the cur-
rent colour configuration of each face (the ‘rubik state’) to the temporary
file rubikstate.dat (to be read by the Perl script rubikrotation.pl). The
\RubikRotation command also appends the keyword ‘ checkrubik’ as well
as a copy of the string of Rubik rotations. It then calls the Perl script
rubikrotation.pl.

For example, if we use the command \RubikCubeSolved followed by the com-
mand \RubikRotation{U,D,L,R} then the associated rubikstate.dat file would
be as follows:

% filename: rubikstate.dat

up,W,W,W,W,W,W,W,W,W

down,Y,Y,Y,Y,Y,Y,Y,Y,Y

left,B,B,B,B,B,B,B,B,B

right,G,G,G,G,G,G,G,G,G

front,O,O,O,O,O,O,O,O,O

back,R,R,R,R,R,R,R,R,R

checkstate

rotation,U,D,L,R

Alternatively, if the \RubikRotation command was \RubikRotation{random, 45}

then the last line written to the file would be the string ‘rotation,random,45’
A \CheckRubikState command triggers the same sequence of events except no
‘rotation’ line is written.

The action of the Perl program is controlled by the keywords (first argument
of each line) associated with each line of the file rubikstate.dat. When control
passes to Perl, the Perl program starts by loading the rubikstate (prompted by
the keywords up, down, left, right, front, back). Next the program performs some
basic checks (prompted by the key word ‘checkstate’), and then it processes the
sequence of Rubik rotations (prompted by the keyword ‘rotation’). If, instead, the
second argument of the ‘rotation’ string is the keyword ‘random’, and provided
this is followed by a valid integer, say n, then the Perl program performs a sequence

10

of n random rotations. Finally, the Perl program writes the final ‘rubikstate’ to
the text file rubikstateNEW.dat. All error messages are written to the text file
rubikstateERRORS.dat and also to the LATEX log file.

Control then reverts to LATEX which then inputs the file rubikstateNEW.dat.
If there are more \RubikRotation commands then this cycle repeats accordingly.
Eventually a ‘Draw...’ command of some form is reached and the final rubikstate
is drawn in a TikZ picture environment.

If the TikZ picture environment is followed by a \ShowRubikErrors command,
then a ‘verbatim’ copy of the rubikstateERRORS.dat file is displayed immediately
under the graphic. Once the graphic is error-free, then the \ShowRubikErrors can
be removed or commented out.

8 The code (rubikrotation.sty)

8.1 Package heading

1 〈∗rubikrotation〉
2 \def\RRfileversion{2.0}%

3 \def\RRfiledate{2014/01/20}%

4 \NeedsTeXFormat{LaTeX2e}

5 \ProvidesPackage{rubikrotation}[\RRfiledate\space (v\RRfileversion)]

The package requires rubikcube.sty. Do not automatically load rubikcube.sty since
this makes it difficult to errorcheck new versions (for the moment at least).
6 \@ifpackageloaded{rubikcube}{}{%

7 \typeout{---rubikrotation requires the rubikcube package.}%

8 }%

The rubikrotation package requires access to the fancyvrb package for the
\VerbatimInput{} command which we use for inputting and displaying the error
file.
9 \@ifpackageloaded{fancyvrb}{}{%

10 \typeout{---rubikrotation requires the fancyvrb package%

11 for VerbatimInput{} command.}%

12 \RequirePackage{fancyvrb}}

8.2 Some useful commands

\rubikrotation First we create a suitable logo

13 \newcommand{\rubikrotation}{\textsf{rubikrotation}}

\@comment

\@commentone

We require access to the percent character so we can write comments in files,
including the log file. We first define percentchar for the write statement (From
Abrahams PW, Berry K and Hargreaves KA (1990), “TeX for the Impatient”,
p 292; available from: CTAN.../info/impatient/)

14 {\catcode‘\%=12 \global\def\rubikpercentchar{%}}%

15 \newcommand{\@comment}{\rubikpercentchar\rubikpercentchar\space}%

16 \newcommand{\@commentone}{\rubikpercentchar}%

11

\@print We need a simple print command for writing comments to a file.

17 \newcommand{\@print}[1]{\immediate\write\outfile{#1}}

\rubikperlname This holds the name of the Perl-5 script . It is used later to check whether the
Perl script exists or not. A plain text configuration file rubikrotation.cfg can
be used to change the default name of the Perl script using a renewcommand.

18 \newcommand{\rubikperlname}{rubikrotation.pl}

\rubikperlcmd This holds the commandline code for calling the the Perl script. A plain text con-
figuration file rubikrotation.cfg can be used to change the default commandline
code using a renewcommand.

19 \newcommand{\rubikperlcmd}{perl \rubikperlname}

8.3 Configuration file

If a config file exists (rubikrotation.cfg) then input it here, ie after defining
the \rubikperlname and \rubikperlcmd commands and before creating the
rubikstateERRORS.dat file.

20 \typeout{---checking for config file (rubikrotation.cfg)...}

21 \IfFileExists{rubikrotation.cfg}{%

22 \input{rubikrotation.cfg}%

23 }{\typeout{---no config file available}%

24 }%

8.4 Clean file rubikstateNEW.dat

We need to clean any existing (old) rubikstateNEW.dat file, since if the TeX shell
switch is accidentally not used then Perl will not be CALLed and hence this file
will not be renewed (ie an ‘old’ image may be used).

25 \typeout{---cleaning file rubikstateNEW.dat}%

26 \newwrite\outfile%

27 \immediate\openout\outfile=rubikstateNEW.dat%

28 \@print{\@comment rubikstateNEW.dat (by TeX)}%

29 \immediate\closeout\outfile%

8.5 rubikstateERRORS.dat

The rubikrotation package requires the Perl program. We first open the file
rubikstateERRORS.dat which is used by the Perl program (rubikrotation.pl)
for writing its error messages to. This file is accessed and displayed by the com-
mand \ShowRubikErrors.

important note: this file is created fresh each time LaTeX is run and hence
the Perl program only appends data to it during the LATEX run, so this file just
grows until either it is destroyed or recreated—a useful feature to keep since the
file accumulates all error messages as the .tex file is processed. We can’t make the
Perl program create the file since the Perl program is only CALLed if we use a

12

\RubikRotation or \CheckRubikState command (which we may not!)—so it has
to be created (opened) here.

The following code first opens the file, and then checks to see if the Perl program
(\rubikperlname) exists; if the Perl prog does exist then all is OK, otherwise we
write an error message to the file.

30 \typeout{---creating file rubikstateERRORS.dat}%

31 \newwrite\outfile%

32 \immediate\openout\outfile=rubikstateERRORS.dat%

33 \@print{\@comment rubikstateERRORS.dat}%

34 \typeout{---checking for Perl script \rubikperlname...}

35 \IfFileExists{\rubikperlname}{%

36 \typeout{---\rubikperlname\space exists OK}%

37 }{\typeout{** ERROR: cannot find Perl program \rubikperlname}%

38 \@print{\@comment ** ERROR: cannot find Perl program \rubikperlname}}%

39 \immediate\closeout\outfile%

8.6 Setting up a newwrite and file-access for new files

Having set up all the primary files, we now need to set up a newwrite for all
subsequent files openings (eg for rubikstate.dat and saving to arbitrary filenames
by the \SaveRubikState command). Otherwise, we can easily exceed the LaTeX
limit of 15. From here-on TEX will use openout7 when opening and writing to
files. We will implement new openings using the command \@openstatefile (see
below).

40 \typeout{---setting up newwrite for rubikrotation to use...}%

41 \newwrite\outfile%

\@openstatefile

\@closestatefile

We also need commands for easy file opening and and closing for new instances of
the file rubikstate.dat etc. Note that for this we are therefore using the same
outfile number as set up by the \newwrite... above.

42 \newcommand{\@openstatefile}{\immediate\openout\outfile=rubikstate.dat}

43 \newcommand{\@closestatefile}{\immediate\closeout\outfile}

8.7 Saving the Rubik state

\@printrubikstate This command writes the Rubik configuration (state) to the file rubikstate.dat,
and is used by the \RubikRotation command. The file rubikstate.dat is read
by the Perl program, and represents the state on which the new \RubikRotation

command acts. Note that we append the key-word checkstate to the end of the
file in order to trigger the Perl program to implement its checkstate subroutine.

44 \newcommand{\@printrubikstate}{%

45 \@print{up,\Ult,\Umt,\Urt,\Ulm,\Umm,\Urm,\Ulb,\Umb,\Urb}%

46 \@print{down,\Dlt,\Dmt,\Drt,\Dlm,\Dmm,\Drm,\Dlb,\Dmb,\Drb}%

47 \@print{left,\Llt,\Lmt,\Lrt,\Llm,\Lmm,\Lrm,\Llb,\Lmb,\Lrb}%

48 \@print{right,\Rlt,\Rmt,\Rrt,\Rlm,\Rmm,\Rrm,\Rlb,\Rmb,\Rrb}%

49 \@print{front,\Flt,\Fmt,\Frt,\Flm,\Fmm,\Frm,\Flb,\Fmb,\Frb}%

50 \@print{back,\Blt,\Bmt,\Brt,\Blm,\Bmm,\Brm,\Blb,\Bmb,\Brb}%

13

51 \@print{checkstate}%

52 }

8.8 RubikRotation command

\RubikRotation The \RubikRotation{〈comma separated sequence〉} command (a) writes the cur-
rent Rubik state to the file rubikstate.dat, and then (b) CALLs the Perl pro-
gram. It also writes comments to the data file and also to the log file.

53 \newcommand{\RubikRotation}[1]{\IfFileExists{\rubikperlname}{%

54 \typeout{---NEW rotation command------------------}%

55 \typeout{---command = RubikRotation{#1}}%

56 \typeout{---Perl script \rubikperlname\space exists OK}%

57 \typeout{---writing current Rubik state to file rubikstate.dat}%

58 \@openstatefile% open data file

59 \@print{\@comment filename: rubikstate.dat}%

60 \@printrubikstate%

61 \@print{rotation,#1}%

62 \@closestatefile% close data file

63 \typeout{---running Perl script}%

64 \immediate\write18{\rubikperlcmd}%

65 \typeout{---inputting NEW datafile (from Perl)}%

66 \input{rubikstateNEW.dat}%

67 \typeout{---}%

68 }{\typeout{** ERROR: \rubikperlname\space does not exist}%

69 }}

8.9 ShowRubikErrors command

\ShowRubikErrors This command inputs the file rubikstateERRORS.dat.

70 \newcommand{\ShowRubikErrors}{%

71 \typeout{---ShowRubikErrors: inputting file rubikstateERRORS.dat}%

72 \VerbatimInput{rubikstateERRORS.dat}}

8.10 CheckRubikState command

\CheckRubikState This command triggers the Perl program to implement some simple error checking
of the Rubik configuration (state). This command (a) writes the current Rubik
state to the file rubikstate.dat, and then (b) CALLs the Perl program. It also
writes comments to the data file and also to the log file..

73 \newcommand{\CheckRubikState}{\IfFileExists{\rubikperlname}{%

74 \typeout{---NEW check command------------------}%

75 \typeout{---command = CheckRubikState}%

76 \typeout{---Perl script \rubikperlname\space exists OK}%

77 \typeout{---writing current Rubik state to file rubikstate.dat}%

78 \@openstatefile% opens data file

79 \@print{\@comment filename: rubikstate.dat}%

80 \@printrubikstate%

81 \@closestatefile% close data file

14

82 \typeout{---running Perl script}%

83 \immediate\write18{\rubikperlcmd}%

84 \typeout{---inputting NEW datafile (from Perl)}%

85 \input{rubikstateNEW.dat}%

86 \typeout{---}%

87 }{\typeout{** ERROR: \rubikperlname\space does not exist}%

88 }}

8.11 SaveRubikState macro

\SaveRubikState The command \SaveRubikState{〈filename〉} saves the Rubik state to a file. Note
that in order to actually write a LaTeX command to a file without a trail-
ing space one must use the \string command (see the book “TeX by Topic”,
p 238). Note that this macro uses the two internal commands \Rubik@comment

and \Rubik@print. #1 is the output filename. We use several \typeout com-
mands to write to the log file.

89 \newcommand{\SaveRubikState}[1]{%

90 \typeout{---NEW save command------------------}%

91 \typeout{---command = SaveRubikState{#1}}%

92 \typeout{---saving Rubik state data to file #1}%

93 \immediate\openout\outfile=#1%

94 \@print{\@comment filename: #1\@commentone}%

95 \@print{\string\RubikFaceUp%

96 {\Ult}{\Umt}{\Urt}{\Ulm}{\Umm}{\Urm}{\Ulb}{\Umb}{\Urb}\@commentone}%

97 \@print{\string\RubikFaceDown%

98 {\Dlt}{\Dmt}{\Drt}{\Dlm}{\Dmm}{\Drm}{\Dlb}{\Dmb}{\Drb}\@commentone}%

99 \@print{\string\RubikFaceLeft%

100 {\Llt}{\Lmt}{\Lrt}{\Llm}{\Lmm}{\Lrm}{\Llb}{\Lmb}{\Lrb}\@commentone}%

101 \@print{\string\RubikFaceRight%

102 {\Rlt}{\Rmt}{\Rrt}{\Rlm}{\Rmm}{\Rrm}{\Rlb}{\Rmb}{\Rrb}\@commentone}%

103 \@print{\string\RubikFaceFront%

104 {\Flt}{\Fmt}{\Frt}{\Flm}{\Fmm}{\Frm}{\Flb}{\Fmb}{\Frb}\@commentone}%

105 \@print{\string\RubikFaceBack%

106 {\Blt}{\Bmt}{\Brt}{\Blm}{\Bmm}{\Brm}{\Blb}{\Bmb}{\Brb}\@commentone}%

107 \immediate\closeout\outfile%

108 \typeout{---}%

109 }%

————————– End of this package ————————–

110 〈/rubikrotation〉

15

