
The standalone Package

Martin Scharrer
martin@scharrer.me

CTAN: http://www.ctan.org/pkg/standalone

VC: https://bitbucket.org/martin_scharrer/standalone

Version v1.1b – 2012/09/15

Abstract

The standalone bundle allows users to easily place picture envi-
ronments or other material in own source files and compile these on
their own or as part of a main document. A special standalone class
is provided for use with such files, which by default crops the resulting
output file to the content. The standalone package enables the user to
simply load the standalone files using \input inside a main document.

Contents

1 Installation 2
1.1 Installation with TeX

Live 2
1.2 Installation with Mik-

TeX 2
1.3 Manual Installation

from CTAN 2
1.4 Dependencies 3

2 Bug reports, feature re-
quests and other feedback 3

3 Introduction 4
3.1 Quick instructions . . 4
3.2 Version update and

backwards compatibility 5
3.3 Similar packages and

classes 5

4 Usage of the standalone
class 7
4.1 Basic usage 7
4.2 Class options 7
4.3 Macros and environ-

ments 11
4.4 Support for Beamer

Presentations 13
4.5 Class configuration file 14
4.6 Conversion to images . 15
4.7 Simple TeX File 18
4.8 FAQ / Troubleshooting 18

5 Usage of the standalone
package 21
5.1 Basic usage 21
5.2 Package options 21
5.3 Macros 25
5.4 Building images from

standalone files 26

1

mailto:martin@scharrer.me
http://www.ctan.org/pkg/standalone
https://bitbucket.org/martin_scharrer/standalone

6 Common macros 26 7 Usage Examples 28

1 Installation

This package is part of the two main LATEX distributions TeX Live and
MikTeX and can be easily installed with their package managers. It is also
provided as TDS ZIP file on CTAN which can be used for a manual install.
Other packages are also required as described in section 1.4.

1.1 Installation with TeX Live

Using a normal TeX Live the package is easily installed using the package
manager tlmgr. The command tlmgr install standalone will install it
and tlmgr update standalone can be used to update it.

Because the Ubuntu/Debian version of TeX Live may not include tlmgr
a manual install of the package is required. The author recommends to
manually install the vanilla version of TeX Live instead which will include
regular package updates.

1.2 Installation with MikTeX

The package can be easily installed using the MikTeX package manager
as described by http://docs.miktex.org/manual/pkgmgt.html. The MikTeX
package name is identical to the normal package name.

1.3 Manual Installation from CTAN

The package is also available on the Comprehensive TeX Archive Network
(CTAN), both as the DTX/INS files and as TDS ZIP file, which can be used
for a manual install. A manual install is only required if the used distribution
does not include the (required version of the) package.

1.3.1 Installation from TDS ZIP file

The TDS (TEX Directory Structur) ZIP file includes all package files in the
final form and relative location. It can be downloaded from CTAN: http:
//mirrors.ctan.org/install/macros/latex/contrib/standalone.tds.zip and from the
Bitbucket project site https://bitbucket.org/martin_scharrer/standalone/downloads/
standalone.tds.zip. It needs only to be unzipped in a TEXMF directory.
Under Linux/Unix this is usually the user TEXMF directory ~/texmf. Un-
der Windows it is usually C:\Users\<username>\texmf (Windows Vista/7)
or C:\Documentsand%Settings\<username>\texmf (Windows XP). Under
Mac OS X it is usually /Users/<username>/Library/texmf. Alternatively
a system local directory can be used which is usually given by the environ-
ment variable TEXMFLOCAL. After the files are copied to this location the

2

http://docs.miktex.org/manual/pkgmgt.html
http://mirrors.ctan.org/install/macros/latex/contrib/standalone.tds.zip
http://mirrors.ctan.org/install/macros/latex/contrib/standalone.tds.zip
https://bitbucket.org/martin_scharrer/standalone/downloads/standalone.tds.zip
https://bitbucket.org/martin_scharrer/standalone/downloads/standalone.tds.zip

file name database of TEX might need to be updated. This can be done
with TeX Live by running texhash <path> or mktexlsr <path>. MikTeX
provides a graphical interface to refresh its file name database as described
by http://docs.miktex.org/manual/configuring.html#fndbupdate.

1.3.2 Installation from DTX File

The package is also provided as DTX (Documented TeX file) which is ac-
companied by an INS (Install) file under http://www.ctan.org/tex-archive/
macros/latex/contrib/standalone. To unpack all package files from the DTX
file compile the INS file with tex once. The manual can be compiled from
the DTX file with pdflatex. This requires the ydoc bundle to be installed.

1.4 Dependencies

The standalone class and package require the xkeyval package. The pack-
ages ifpdf, ifluatex and ifxetex are loaded if available, otherwise some
fall-back code is used. If enabled the class options varwidth, preview and
beamer require the package or class of the same name.

The standalone package requires the currfile package (which in turn
uses filehook) to track the correct file names of sub-files included us-
ing \input. For the compilation support for included standalone files the
gincltex and filemod packages are also required.

To compile the documentation of standalone the ydoc bundle is required.
All of these packages are included in recent versions of the TeXLive or

MikTeX distributions and are freely available on CTAN.

2 Bug reports, feature requests and other feedback

Bug reports, feature requests and other feedback about the standalone
bundle can be sent to the author either by email to martin@scharrer-online.de
or using the issue tracker for the bundle under . Bug reports should include
the used version of standalone as well as the used LATEX format (pdflatex,
latex, xelatex, etc.) and distribution including its version. Usually a
minimal example which recreate the issue is immensely helpful in analysing
and solving any bug. Please look for existing related issue tickets first and
check the FAQ/troubleshooting in section 4.8 first. Issues related to the
preview class option should be compared with a direct use of the underlying
preview package.

3

http://docs.miktex.org/manual/configuring.html#fndbupdate
http://www.ctan.org/tex-archive/macros/latex/contrib/standalone
http://www.ctan.org/tex-archive/macros/latex/contrib/standalone
http://www.ctan.org/
mailto:martin@scharrer-online.de?subject=standalone:%20
https://bitbucket.org/martin_scharrer/standalone/issues

3 Introduction

Larger LATEX documents can be split into multiple TEX files which are then
included in a main document with \include for e.g. chapter files or \input
for e.g. TEX-coded pictures. Keeping pictures in their own sub-files improves
readability of the main file and simplifies the sharing of them between different
documents. However, during the, sometimes lengthly, drawing/coding process
it has benefits to be able to compile the pictures on their own. The compile
process is much quicker and the resulting document only holds the picture
which avoids constant page turning and zooming.

While it is possible to write a small ‘main’ file for each picture file, this
method is a little cumbersome and clutters the directories with a lot of extra
files. A second method is to place the ‘main’ components, i.e. a preamble,
directly into the picture files and make the main document ignore this code
sections.

The package standalone can be used in the main document to skip all
extra preambles in included files. The main file must load all packages and
settings required by the sub-files. Several package options are provided to
collect the preambles of the sub-files automatically and execute them from
the main file.

A standalone class is also provided to minimise the extra preamble code
needed in this files. It’s usage is optional, but simplifies and standardises
how picture files are compiled standalone. The class uses by default the
preview package to create an output file which only contains the picture
with no extra margins, page numbers or anything else. A configuration file
standalone.cfg read by the class allows the user to adjust settings and
macros easily on a per directory base.

3.1 Quick instructions

Load the standalone package very early in the main document. Also all pack-
ages needed by all the sub-files must be loaded by the main document. Include
your picture or other sub-files using \input or a similar macro as normal.
In the sub-files use the standalone class with a normal \documentclass
and load all packages needed for the particular file. Finally wrap the actual
content of the sub-file in a document environment. Avoid empty lines at the
begin or end of the document body.

When the sub-file is compiled on its own the \documentclass and
document environment will be active as normal. The main file, however,
will skip everything from the \documentclass till the \begin{document}.
The (now fake) document environment is redefined to be a simple TeX-group.
Any code lines after the \end{document} will be ignored. The real document
environment of the main file will be unaffected and will work as normal.

The packages required by each sub-file can be transfered automatically to

4

the main document preamble using the options listed in section 5.2.

3.2 Version update and backwards compatibility

The default behaviour of v1.x of the standalone class is slightly different
as the one of v0.x, but should result in the same output for the majority
of standalone files. In previous versions the preview option was enabled
by default, but since v1.0 the new, similar crop option is now used. This
change should improve several use-cases, like avoiding the creation of a
paragraph due to a trailing empty line and issues with TikZ patterns under
XeLaTeX. However, paragraph breaks are now ignored by default, which
should be no issue at all for picture and similar environments which are the
main target of the standalone class. Additionally, the default border has
been changed from the preview default of 0.50001bp to no border (0pt).
Both of these settings can be changed back to the old default by adding
\standaloneconfig{preview,border=0.50001bp} in the configuration file
or explicitly stating these options as class options.

One true incompatibility between v0.x and v1.x is the load point of
the class configuration file. In v0.x the configuration file was loaded af-
ter all options where processed in order to have all if-switches their final
value. In v1.x the configuration file is now loaded directly before the given
class options are processed. This allows to easily set default options for all
standalone files. Code which relies on if-switches (like \ifstandalone and
\ifstandalonebeamer) should be placed inside a \AtEndOfClass{〈code〉}
macro. This change might require an update of personal configuration files.

3.3 Similar packages and classes

The following packages, libraries and/or classes target the same or similar
applications as the bundle and are mentioned here for easy comparison, so
that the user can decide which suits them best.

The docmute package is written for the same basic task as the standalone
package. However, no sub-preamble processing other than the removal is
support. It also doesn’t provide a special class or configuration file.

The subfile package and class are written for the same application to
allow subfiles to be compiled standalone. However, the class class will import
the preamble from a given main file, while standalone is designed more for
the opposite direction where the preamble of subfiles can be imported to the
main document. Therefore a standalone file can be more easily included
into several documents, like a paper (scientific publication), a corresponding
presentation and then a thesis, while subfile is designed for a one-to-one
relationship. At the time of the writing subfile is not part of TeXLive due
to a missing license statement.

The external library of tikz allows to externalize tikzpictures from

5

an main document. Its build feature is similar to the one provided by
standalone. However, both work form different directions: standalone
allows to include external tikzpictures to be included in a main file while
ignoring the preamble while external writes them from the main file to
temporary external files. The user must decide which workflow is better
suited for him/her. Also standalone is working independently of tikz and
supports other picture environments like pstricks or any other TEX material.

6

4 Usage of the standalone class

4.1 Basic usage

Creating a basic standalone is straight-forward: Create a normal LATEX
document which uses the standalone as document class. The preamble
should load all required packages and libraries for the content. The content,
usually a single picture environment like tikzpicture, is placed in the
document body. Empty lines before and after the picture should be avoided.
Also the \begin{document} and \end{document} should each stand on a
source line of their own.

Listing 1: Basic use of the standalone class.
\documentclass{standalone}
\usepackage{somepackage}
\begin{document}
\begin{somepicture}

\somedrawingcommands
\end{somepicture}
\end{document}

Such a file can be compiled as normal. The standalone class will crop
the resulting output file (PDF or DVI/PS) to the content size plus a certain
border. Page number and other header or footer material will be suppressed.

For pictures drawn with TikZ a dedicated tikz option is provided which
loads the tikz package and also configures the tikzpicture environment to
create a single cropped page. For PSTricks pictures an corresponding pstricks
option is provided.

Listing 2: Basic use of the standalone class.
\documentclass[tikz]{standalone}
%\usetikzlibrary{calc}
\begin{document}
\begin{tikzpicture}

\draw (0,0) rectangle (2,1) node [midway] {Example};
\end{tikzpicture}
% Further ’tikzpicture’ environments are possible which will create further pages.
\end{document}

4.2 Class options

The standalone class provides the following options to adjust the processing
and size of the content. These options are removed from the normal list of
class options and not passed to any loaded packages or classes like it would
usually occur. This is also done to avoid option conflicts with identical named

7

options of the underlying class.
All boolean options take either ‘true’ or ‘false’ as optional values.

Otherwise, if the option is used without a value, ‘true’ is used. If not
mentioned otherwise all options set to ‘false’ initially. Options might switch
other options on or off. For example, mutual exclusive options will disable
each other. The order of the option is obeyed and later options will prevail
over earlier ones.

By default the crop option with border=0 is enabled. In versions prior to
v1.0 the option preview was the default. This chance was deemed required
and should not affect most documents. However, in some cases resetting the
preview option might be required.

Certain class options can also be set inside the preamble or document
body using \standaloneconfig{〈options〉}.

class=〈class name〉

Specifies the underlying class which is loaded by the standalone class. By
default article is used, which should be suitable for standalone pictures.
In certain cases it may be from benefit to use the same class than in the
targeted main document. For the beamer class the special beamer option
should be used instead.

crop=true|false

If enabled this option crops the content to its natural size plus a specified
border. This is done by saving the content in a box register and resizing the
page size relative to the box dimensions. This option is enabled by default
(since v1.0). This option is mutually exclusive with the similar preview option
and will therefore disable it. If both options are used the last one will be
enabled and the other will be disabled. Also float=false will be set by
crop=true in order to avoid issues with floating environments.

preview=true|false

If enabled this option loads the preview package with the tightpage option
and wraps the content into a preview environment. This crops the content
to its natural size plus a specified border. Issues with the preview options
and TikZ shadings under XeLaTeX have been reported. In this cases the
crop option should be used instead. Note that this option was enabled by
default for versions before v1.0, but since then crop is enabled by default.

This option is mutually exclusive with the similar crop option and will
therefore disable it. If both options are used the last one will be enabled and
the other will be disabled. Also float=false will be set by preview=true
in order to avoid issues with floating environments.

8

border=〈length (all sides)〉
border={〈length (left/right)〉 〈length (bottom/top)〉}
border={〈length (left)〉 〈length (right)〉 〈length (bottom)〉 〈length (top)〉}

This option allows to specify the border used by the preview and crop options.
An alternative name of this option is margin. The border can either be given
using a single value for all sides, separately for the horizontal and vertical
borders or for all sides separately. Multiple values are separated by spaces,
which require the whole value to be wrapped in braces. By default a border
of 0pt is set.

This option can be changed during the document using \standaloneconfig
and will affect all following pages.

multi=true|false
multi={〈environment name〉, ...>}

By default the standalone class assume that the whole content is one
block which should be shown on one single page. If this option is activated
multiple pages are supported. Each page will be cropped to its content plus
the selected border (as long either preview or crop are enabled). A set of
environments which hold a single page must either be given as option value
or declared using \standaloneenv{〈environment name〉, ...}. No typeset
material should be used outside such environments. Note that this option is
enabled automatically by \standaloneenv if either crop or preview is enabled.
However, it needs to be set explicitly as class option if the ignorerest option
is also set. If environment names are provided as option values the option
is set to ‘true’ and the environments are passed to \standaloneenv which
is executed at the begin of the document environment, where all mentioned
environments should be already defined.

ignorerest=true|false

This option is only meaningful when both multi and crop are enabled. Then it
determines if all material which does not appear inside environments declared
with \standalone should be ignored or not. This is done by boxing and
discarding all outside material. Any code will be placed inside a group and
therefore local settings made between environments will not affect later code.
Code in the preamble is not affected. It is recommended to keep this option
disabled and only use it if really required. It should be noted that which
preview such material is always ignored while not affecting local settings.
Therefore the ignorrest option can be seen as a compatibility setting to make
crop act more like preview, if this is required by the user.

9

varwidth=true|false
varwidth=〈width〉

A trailing empty line between the content and \end{document} will normally
create a paragraph which is \linewidth wide. This paragraph (or any other
one) will enlarge the size of smaller pictures and display itself as a large right
border. This option uses the varwidth package to wrap the content into
a varwidth environment, which is based on minipage, but will always use
the natural width of the content if it is smaller than the given maximum
width. The resulting effect is that the created paragraph will not cause any
additional width and that multiple paragraphs can be included as part of
the content. The used maximal width (which is provided to the underlying
minipage environment) is \linewidth by default, but can be set by provided
a width as value to the option. Doing so will also switch the option on.

If the crop option is used the content is placed in restricted horizontal
mode which ignores paragraph breaks. Using the varwidth option paragraph
breaks are enabled again.

A drawback of this option is that the content will be limited to the given
width, i.e. wider picture environment will be cropped to the width at the
right side. In such cases either a larger width should be selected, the option
be switch off, any paragraph breaks should be avoided (no trailing empty
lines) or one of the specific picture options like tikz or pstricks should be used
instead.

This option can be changed during the document using \standaloneconfig
and will affect all content of the following pages.

tikz=true|false

This option declares that the content contains of one or more tikzpicture
environments. This sets multi=tikzpicture,varwidth=false and loads
the tikz package.

pstricks=true|false

This option declares that the content contains of one or more pspicture
or pspicture* environments. This sets multi=pspicture,varwidth=false
and loads the pstricks package. Because pspicture* uses pspicture inter-
nally it is also supported. Other environments which use it as well should also
be supported, but might also declared explicitly using \standaloneenv{〈environment
name〉, ...}.

10

beamer=true|false

If set to ‘true’ this option enables a special beamer mode, where the normal
cropping is disabled. Instead the content is shown on a blank beamer frame.

float=true|false

If this option is that to ‘false’ (which is the default) any floats like figure
and table environments are turned into non-floating environment. This is re-
quired for the options crop and preview to work, so these will set float=false
when set to ‘true’ itself. In general it is recommended to keep floating envi-
ronments inside the main document and only place the content of them into
standalone files. This also makes it simple to include the same content in
different floats of different main documents.

If custom floats are defined using a package like float are not supported
yet. Dependent on the way they define floats they might still work. For these
float=true should be set as class options so that the normal definition of
floats is preserved. Afterwards \standaloneconfig{float=false} can be
used to disable floats while taking the changed float definition into account.

convert={〈conversion options〉}
png={〈conversion options〉}

These options allow to enable and configure the conversion feature. See
section 4.6 for the full description.

4.3 Macros and environments

The following macros and environments can be used inside the preamble of
standalone files. Further macros are listed in section 6 which are defined by
both the class and package and can be used in standalone files but also in
the main document.

\standaloneconfig{〈options〉}

This configuration macro accepts the class options described in section 4.2.
It can be used inside the class configuration file to set default settings used
by all standalone files, as mention in section 4.5. These settings are set just
before the class options of the standalone file are processed.

Certain class options (e.g. border, varwidth) which do not have a global
effect can also be changed using this macro later in the preamble or even
inside the document body between different content if the multi option is
enabled.

11

\standaloneenv{〈environment〉,〈environment〉,...}

If the multi option is in effect this macro should be used to declare all envi-
ronments which produce content. Common examples of such environments
are tikzpicture, pspicture and other picture environments. This macro
must only be used inside the preamble. Every use of such an environment
in the document body will produce a new page. An exception are nested
appearances of such environments, e.g. a tikzpicture inside a node of an-
other tikzpicture. The environments must be previously defined and must
not be redefined afterwards. Multiple appearances of the same environment
name inside one or multiple \standalonenv should be avoided.

This macro uses \PreviewEnvironment internally if the preview option
is active. Own code is used with the alternative crop option. If none of
these options are enabled this macro will have not effect and will be silently
ignored.

\standaloneignore

In rare cases some code must be placed before the \documentclass of a
sub-file (e.g. \PassOptionsToPackage). Because the main document will
only skip code between \documentclass and \begin{document} this code
will be executed by it. In order to avoid this the macro \standaloneignore
can be used at the very beginning of a sub-file to skip over this code. However
it must be written as \csname standaloneignore\endcsname to avoid a
‘Undefined control sequence’ error when compiled standalone. After all the
class is not loaded at this point, therefore no standalone macros are yet
defined. The \csname . . . \endcsname construct will simple make it equal to
\relax in this case.

Please note that all code before \documentclass is not processed by
any of the subpreamble options but always simply removed. This macro was
inspired by the similar macro \docmute of the docmute package.

\begin{standalone}
〈sub-file content〉

\end{standalone}

The standalone environment is automatically wrapped around the content
of standalone files. If the multi option is enabled it is wrapped around every
page, i.e. every environment declared with \standaloneenv. The definition
of this environment depends on options like crop and preview. It is possible to
redefine this environment in the configuration file or the document preamble
to adjust the processing of the content, but this is not recommended. If done
most content related options will stop work and/or cause errors.

The beamer specific macros and environments are described in section 4.4.

12

4.4 Support for Beamer Presentations

Presentation can be written in LATEX using the beamer class. Each presen-
tation frame is wrapped in a frame environment. Overlay effects can be
added using special macros. This effects result in multiple pages per frame.
Pictures with such overlay effects can not be compiled standalone using
the normal settings. Instead the standalone class must load the beamer
class and wrap the content also in a frame environment while skipping the
preview environment. To activate this settings load the standalone class
with the beamer option. Because the frame environment is quite special
(it normally collects all it’s content and calls the \frame) and must also
support verbatim content it is not easily possible to redefined the document
environment to include frame. Also frame accepts options which document
doesn’t. Therefore a second environment called standaloneframe is used in
the beamer picture files. It will be equal to frame in standalone mode, but
without effect otherwise.

\ifstandalonebeamer

Both the class and the package provide the if-switch \ifstandalonebeamer,
which can be used to only include code if the file is compiled standalone
with the beamer class option set. The switch is set to \iftrue by the class
when loaded with the beamer option and always to \iffalse by the package.
It can be used to place beamer specific options in the configuration files,
which should be skipped for non-beamer standalone files. If used inside the
configuration file this switch must be placed inside \AtEndOfClass{...},
because the beamer option is not yet processed

\begin{standaloneframe}<〈overlay specification〉>[<〈default overlay spec〉>]
[〈options〉]{〈optional frame title〉}{〈optional frame subtitle〉}

〈code with beamer overlays〉
\end{standaloneframe}

The standaloneframe environment must be used in sub-file holding beamer
overlay code. It is only defined when the class is called with the beamer
option and acts as a replacement of the frame environment of beamer when
compiled standalone. All optional arguments of frame are supported but
most might not be useful for normal sub-files. When compiled as part of a
main document it does nothing except of gobbling its arguments.

The listings 3–5 shows a beamer standalone example and its effective
code in standalone and main document mode.

13

Listing 3: Use of standalone class with beamer option.
% Use of ’standalone’ class with a beamer overlay:
\documentclass[beamer]{standalone}
% Load packages needed for this TeX file:
\usepackage{tikz}
% Surround TeX code with ’document’ environment:
\begin{document}
\begin{standaloneframe}[<options>] % e.g. ’fragile’
% Add your TeX code:
\only<1>{ One }%
\only<2>{ Two }%

\end{standaloneframe}
\end{document}

Listing 4: Effective beamer code if compiled standalone.
\documentclass{beamer}
<beamer code from standalone.cfg file>
\usepackage{tikz}
\begin{document}
\begin{frame}[your options]

\only<1>{ One }%
\only<2>{ Two }%

\end{frame}
\end{document}

Listing 5: Effective code if included in a beamer presentation.
\begingroup

\only<1>{ One }%
\only<2>{ Two }%

\endgroup
\endinput

4.5 Class configuration file

The standalone class loads a configuration file called standalone.cfg just
before the options are processed, but after all options and if-switches are de-
clared. Any class options can then also be given using \standaloneconfig{〈options〉}.
Settings which depends on the finally used options should be placed inside
\AtEndOfClass{...}, so that they are processed after all options. This is
particular required for beamer specific settings, because at load time of the

14

configuration file a given beamer option is not yet processed. Please note that
this was handled differently before v1.0, so in old configuration files edited
by the user the \AtEndOfClass must now be added.

A default configuration file is provided together with the bundle and holds
some default settings. Because this file will be overwritten every time the
bundle is updated, users should create an own configuration file in the local
TEXMF tree or the document directory. In order to keep the default behaviour
this file should either contain the content of the bundle configuration file
or load it. Because it can be assumed that the bundle configuration file
resides inside a standalone directory, therefore it can be loaded from a user
configuration file using \input{standalone/standalone.cfg}.

4.6 Conversion to images

Using the convert class option the standalone file can be easily converted to
an raster image. This is done by executing an external program to convert
the output file (PDF or PS) to an image (recommended is the lossless PNG
format, but also others are supported).

4.6.1 Conversion settings

Conversion settings can be given as the value of the convert={〈settings〉}
option. By default conversion is disabled (convert=false). If enabled with-
out providing own settings (convert, convert=true) the following default
settings are used: PNG format, a density of 300dpi, no explicit size and the
output file name is given by \jobname, i.e. the name of the LATEX document.
Using the convert option with any value other than false will enabled it. All
normal conversion settings are listed in Table 1, while Table 2 lists the more
advanced options which e.g. can be used to modify the conversion command
directly.

4.6.2 Conversion software

The conversion requires an external image converter program to be installed.
By default the two following tools are supported and either of them must
be installed in order to use the conversion feature. In order for an external
program to be executed the -shell-escape option1 must be used for the
compiler executable, e.g. pdflatex -shell-escape filename. Without
this option no conversion is possible.

By default the conversion program of Image Magick is used for PDF
LATEX files, which is freely available for Unix/Linux, Mac and MS Windows.
Under Ubuntu Linux it can be installed using the shell command ‘sudo
apt-get install imagemagick’. The conversion executable is simply called

1Maybe named differently depending on the used LATEX distribution

15

http://www.imagemagick.org/

Table 1: Conversion Options (to be used in the value of convert class option)

Sub-Option Description Default value

(no value) Conversion enabled with default settings ./.
true Conversion enabled (with default settings if no other

options are given)
(no value)

false Conversion disabled (no value)

density Sets the density in dots-per-inch (dpi). Can be a single
numerical value or ‘〈X 〉x〈Y 〉’.

300

size Sets the size of the image. Can be a single numerical
value or ‘〈X 〉x〈Y 〉’. If empty the size is determined
by the density setting and the size of the PDF.

(empty)

subjobname The jobname used for the internal LATEX run \jobname
inext Input file extension including the leading dot .pdf or .ps
inname Name base of input file (i.e. file name without exten-

sion)
\subjobname

infile Input file name \inname\inext
outext Output file extension including the leading dot .png
outname Name base of output file \inname
outfile Output file name \outname\outext

Note: the settings (except ’true’ and ’false’) can also be used as macros in other settings.

Table 2: Advanced Conversion Options

Sub-Option Description Default value

command Command line used for conversion. (see imagemagick)
imagemagick Sets the convert command to use Image

Magick:

command={\convertexe\space -density \density\space
\infile\space \ifx\size\empty\else
-resize \size\fi\space -quality 90 \outfile}

convertexe Name of the executable of Image Magick. (see section 4.6.2)
ghostscript Sets the convert command to use Ghostscript:

command={\gsexe\space -dSAFER -dBATCH -dNOPAUSE -sDEVICE=\gsdevice\space
-r\density\space -sOutputFile=\outfile\space \infile}

gsexe Name of the executable of Ghostscript. (see section 4.6.2)
precommand Command to be executed before the actual

conversion command.
dvips \jobname (DVI/PS),
empty (PDF)

gsdevice The output device to be used for ghostscript.
Already set up for PNG and JPG output.

Uses known device if defined for
output format, otherwise the out-
put format itself.

onfailure Sets if an type of ‘message’ which should
be triggered on conversion failure: error,
warning, info or ignore.

warning

16

‘convert’. However, there is another program with the same name provided
by MS Windows itself which converts old FAT filesystems to NTFS! It has
been suggested to rename the Image Magick executable to ‘imgconvert’
instead. By default standalone uses ‘imgconvert’ as executable if MS
Windows is detected and ‘convert’ otherwise. The executable name can be
change manually using the ‘convertexe’ conversion option or by using

\standaloneconfig{convert={convertexe={convert}}}

in the configuration file ‘standalone.cfg’.
Another conversion program is Ghostscript which is a very common

PostScript interpreter which also supports PDF. It is used by default for
DVI/PS files. Under Ubuntu Linux it is most likely already installed but
otherwise can be installed using ‘sudo apt-get install ghostscript’ or
‘sudo apt-get install gs’. It can convert both to various output formats
and is freely available for Unix/Linux, Max OS X and MS Windows. It
requires to set the correct output device which is not always fully identical
to the output format (e.g. ‘png16m’ for a PNG (with 16 million colors)).
The devices for PNG and JPG are already configured. Other devices can
be configured using the defgsdevice={〈.extension〉}{〈device〉} conversion
setting. The Ghostscript executable is usually named ‘gs’ under Linux/Unix
and ‘gswin32c’ under MS Windows and configured this way by default, but
this may be changed using the gsexe setting.

4.6.3 Conversion process

The conversion process is currently implemented in the following way to allow
the normal compilation and subsequent conversion using only one (manual)
compiler run. Because the document must be fully compiled before the
conversion can occur the standalone executes the same LATEX compiler (e.g.
textttpdflatex) again as a sub-process which compiles the current document
fully. This is done when the standalone class is loaded, so that the main
compiler instance is still at \documentclass and has not yet itself opened
the output file for writing. After the document got compiled using the sub-
process the external conversion tool will be executed. If required intermediate
conversions like dvips are also executed beforehand. Finally the main
compiler run is terminated without producing any output, keeping the output
file generated by the sub-process intact. A drawback of this implementation
is that the log file created by the sub-process is overwritten by the main
process and does not hold meaningful information. This can be compensated
by setting a different jobname for the sub-process using the subjobname
conversion setting.

17

http://pages.cs.wisc.edu/~ghost/

4.6.4 Conversion examples

PDF/PS is rastered with 600x100dpi and then converted to JPG:
\documentclass[convert={density=600x100,outext=.jpg}]{standalone}

Produces BMP with 400x400px (one side might be meder if content is not
quadratic in shape):

\documentclass[convert={outext=.bmp,size=400}]{standalone}

Produces TIFF G4 output file using Ghostscript with a density of 72dpi:
\documentclass[convert={ghostscript,gsdevice=tiffg4,

outext=.tiff,density=72}]{standalone}

Produces PNG (default) with a size of 640px (suitable to be uploaded on
StackExchange sites without the image getting downscaled):

\documentclass[convert={size=640}]{standalone}

4.7 Simple TeX File

A simple standalone.tex file is provided together with the bundle, which
may be useful in special occasions. It will set the \ifstandalone switch
to true when compiled standalone but to false when loaded after any
\documentclass macro, as long the switch isn’t defined yet. It must be
used if this switch is required before the \documentclass of a standalone
file.

Listing 6: Usage of ’standalone.tex’.
\input{standalone} % use before any ’\documentclass’
\ifstandalone

% Used only if compiled standalone
\fi

4.8 FAQ / Troubleshooting

This section expands some issues and their solution which can arise with the
standalone class.

Large white space / border at the right side

A large white space / border on the right side occurs when the content
is placed inside a paragraph. This causes the content to be \linewidth
wide and so smaller pictures will contain now a white space at the right. A
common cause for this is that there was is a empty line between the content
and \end{document} which causes a paragraph break.

This issue can be solved by either removing any trailing lines or other para-
graph breaks, or by using the varwidth option which suppresses the extra added

18

width. It is also possible to use themulti option and \standaloneenv{〈environment
name〉} to declare certain environments as page content. The tikz option
does this for tikzpictures and the pstricks option for pspicture. See the
descriptions of these options for more details.

Some amount of the content on the right side is missing

If the content is cropped to much on the right side, check if the varwidth
option is used. In this case the used maximum width (\linewidth by default)
is too small. A larger width can be set using varwidth=〈length〉 or the option
can be disabled altogether using varwidth=false. The largest width possible
is given by \maxdimen, which however might cause internal overflows.

This can also be caused with beamer content (i.e. when the beamer option
is used). In this case no cropping or varwidth environment is used at all,
but the content is simply to large to fit on a beamer frame. To avoid this
rescale the content to do fit. This can be realised by either using scaling
facilities of the used picture environment (like scale with environment,
but this only scales coordinates) or using \scalebox or \resizebox from
graphicx. For complicated code which contains verbatim or other catcode
changing code either the \Resizebox from the realboxes package or the
{adjustbox}{scale=<factor>} environment from the adjustbox package
should be used.

A multi-page document contains some pages with unwanted con-
tent

This is caused while multi=true and crop=true are set but ignorerest=false
and the document contains typeset material outside of environments declared
with \standaloneenv. To avoid that this extra material should be removed
or ignorerest should be set to true. This will also ignore all settings inside the
document body which are not inside a declared environment. These can be
moved to the preamble instead. See the description of the ignorerest option
for more details.

In a multi-page document using DVI/PS mode all pages except
the first have a vertical offset

The vertical reference points in PostScript could does not change when the
pages are resized to fit the individual content of every page. Therefore
an offset is added to compensate for this, which shifts the content to the
appropriate vertical position. Should this not work as expected please inform
the package author and provide a small example which causes this issue,
together with the version number of the used latex compiler and tools (like
dvips, ps2pdf) as well as the used standalone bundle.

19

Issues with cropped files in DVI mode

The crop option uses PostScript commans in DVI mode, i.e. when latex not
pdflatex (or others) is used as a compiler. This PostScript commands will
only work once the DVI is converted to PS or EPS. Currently this cropping
code is experimental and might not produce a full (E)PS standard compatible
file. This can lead to wrong bounding boxes and wrong orientations or,
dependent on the used PostScript tool, even to PostScript compiler errors.
Some issues can be overcome by converting the the (E)PS file to a (more)
standard compatible version using tools like eps2eps or Ghostscript.

Errors “Float(s) lost” or “not in outer par mode”

Floating environments like figure or table can not be used while float=true
and either crop=true or preview=true is set. The last two options will try
to store the float into a box which is not allowed (because it can’t the float
any longer). Usually float=false will solve this error, because it turns
these environments into non-floating alternatives. Because both the crop and
preview option will set float=false themselves, this issue can only arise
when the float option is manually set afterwards.

Image conversion does not work

In order for the image conversion to work an external conversion software must
be installed. By default either Image Magkick or GhostScript is used. Please
insure that either or both of these softwares are installed. Installation guide
for your operating system should be easily available on the Internet. The
LATEX compiler option -shell-escape must be used to allow this external
software to be executed from within the LATEX code. If this two points are
fulfilled but the conversion does still not work, please check the log file. The
lines in question start with ‘runsystem’ (at least with TEX Live 2011).

20

5 Usage of the standalone package

5.1 Basic usage

The standalone package needs simply be loaded using \usepackage in a
main document. It redefines the \documentclass macro, which can occur
in sub-files, so that it ignores anything till the next \begin{document} and
then takes the document environment as a simple group. The real document
environment in the main file is not affected. Sub-files can then be included
in the main document body using \input{〈filename〉}.

The standalone package must not be loaded before the document class
using \RequirePackage, because this will cause issues. Also it is not possible
to \input standalone files inside the preamble, e.g. as part of a \savebox
assignment.

It is possible to cascade standalone files, i.e. \input a standalone
file from within a standalone file. Then both the standalone class and
the standalone package must be loaded by the any parent standalone file.
These parent files can still be used inside other LATEX documents if these load
the standalone package themselves.

See section 5.2 for a list of package options which enable further features.

5.2 Package options

The following options are supported by the standalone package. Most of
them are boolean options which take either ‘true’ or ‘false’ as optional
values. If such an option is used without a value, ‘true’ is used. If not
mentioned otherwise all options set to ‘false’ initially. Options might switch
other options on or off. The order of the option is obeyed and later options
will prevail over earlier ones. Note that some older versions of the standalone
package only take the option without any value.

subpreambles=true|false

The standalone package removes all sub-file preambles (“sub-preambles”) by
default when loaded. However, if the package is loaded with the subpreambles
options, all sub-preambles are stored in an auxiliary file with the name ‘〈main
tex file name〉.sta’ (for standalone). This file is then loaded or processed at
the beginning of the next LATEX run (i.e. at the place in the preamble where
the standalone package is loaded). The way how the subpreambles option
works can be controlled by the options sort, print and comments/nocomments.
Please note that the sort and print options require of course the subpreambles
option and will enable it if not already done so.

21

sort=true|false

With only the subpreambles option set, the sub-preambles are simple read and
executed unchanged. This includes the risk of option clashes if one package
is loaded with different options inside the sub-preambles and/or the main
preamble. This is avoided by the sort option, which accumulates all packages
loaded by all sub-files together with their options. The options are then
marked to be loaded by the package using LATEXs \PassOptionsToPackage
macro. The packages are loaded at the end of the preamble using the
\AtBeginDocument hook. This allows the user to load the same packages
with own options in the main file, after the subversion package is loaded,
without any option clashes.

print=true|false

While the sort option is giving already good results, problems with the order
of packages can still occur. Some packages provide, redefine or patch the same
macros, so that they must be loaded in the correct order to give the desired
result. Potential additional code in the sub-preambles, required for some
sub-figures but maybe incompatible with others, complicates the situation
further. If such issues occur they can hardly be handled in an automatic way.
Instead the sub-preambles must be carefully merged into the main preamble.
The option print was created to simplify this otherwise cumbersome task.
It concatenated all sub-preambles into a single file named ‘〈main tex file
name〉.stp’ (for standalone, print). Each preamble is commented with its
original file name. Please note that .sta file mentioned above, while quite
similar, holds additional macros and might not be easily user readable or
editable. After the file was generated it can be easily pasted into the main
file preamble using a text editor.

When the print option is enabled the normal .sta file is not generated or
loaded. Because this will cause most likely some errors related to packages
not loaded, all sub-file bodies will be skipped. A warning is printed for each
sub-file to remind the user about this fact. The print option is only indented
to by used when required to get a list of sub-preambles. After including this
list in the main file the option must be removed to compile the main file
normally.

print,sort

Finally if both the print and sort options are enabled, a ‘sorted’ list of
sub-preambles is printed into the .stp file. In this ‘sorted print’ mode
all \usepackage macros and other similar macros like \usepgflibrary,
\usetikzlibrary as well as \usetikztiminglibrary from the pgf, tikz
and tikz-timing packages, respectively) are removed from the rest of the sub-

22

preamble code. A list of packages (and libraries) without duplicates is printed
at the begin of the .stp file (using \usepackage, of course). Every option
provided by any sub-file for a package is added, again without duplicates. If
specific package date was requested in a sub-file it is also added. If multiple
dates are requested for one package, the most recent (i.e. the “highest one”,
not the last processed) is used. After this list(s) the rest of the sub-preamble
code is printed with the above macros removed. This mode frees the user
from the need to remove duplicates and collect package options manually.

Please note that all \usepackage and similar macros inside braces {} will
not be seen by standalones sort macro and therefore are not extracted or han-
dled in any special form mentioned above. This can be exploited to load cer-
tain packages only in standalone mode but not in the main document. Unfor-
tunately, macros inside \ifstandalone...\fi are seen and extracted while
not wanted inside the main file. The macro \onlyifstandalone{〈code〉}(see
below) was created because of this two reasons. Its argument braces hide
the content from the scanner. It is then also completely removed from the
printed sub-preamble code.

comments=true|false
nocomments

The comment option selects if the .stp file should also include the comments
of the sub-preambles. For backwards compatibility nocomments exists which
is identical to comments=false. Comments are included by default in the
non-sorting print mode (print without sort option), but can cause ‘wrong’
results during the ‘sorting’ process and are therefore removed by default
in this mode. The reason for this can be explained as follows. In order
to transfer the comments from the sub-files to the .stp file TEX must be
instructed to handle them as normal input and not discard them. However,
in this case the scanning algorithm which removes \usepackage and friends
can not distinguish between ‘active’ macros and macros which are commented
out. All above mentioned macro inside comments will then be processed as
when there where ‘active’. The user might favour the information provided
by the comments over this small risk and enable them using the comments
option.

group=true|false

This option is set the ‘true’ by default and controlled whether or not a
group is added around the content of standalone files. Normally (‘true’)
the document environment of the sub-files is turned into an environment
which does nothing, besides adding the usual group. If set to ‘false’ this
environment made transparent, so that no group is added. Any definition
inside the document body of sub-files will still be accessible after the \input

23

macro. Note that this does not effects the \includestandalone macro which
always will add a group.

mode=〈mode〉

Sets the mode for \includestandalone. Valid values are ‘tex’ (use source
file, default), ‘image’ (use existing image file produced by the source file),
‘image|tex’ (use image if available, source otherwise), ‘build’ (build image
from source, then use it), ‘buildmissing’ (only build image if it does not
exist) and ‘buildnew’ (only build image if source file is newer). See section 5.3
for more details. See also section 5.4 for further details.

obeyclassoptions=true|false

If this option is enabled the \includestandalone will try to obey the class
options used in the standalone files while in ‘tex’ mode. This only works if
the standalone file uses the standalone class and only with certain options.
The class configuration file will also be loaded (in a local scope, for every
standalone file) in order to load the default settings.

This feature is intended to ensure (nearly) identical results independent
if the standalone files are included as source code or as image, in order to
permit an easy switch between this two modes. In particular, the stan-
dard size options 10pt, 11pt and 12pt are applied to the standalone file
(supported for the standard and KOMA Script classes) as well as the bor-
der class option. The multi’=’<environment>, . . . option is supported
and will make the page=〈number〉 option of \includegraphics work with
\includestandalone. This means, that one particular page can be selected,
while all other environments are skipped. By default the first page is taken
(if multi was used). The special value of -1 will include all pages from the
source file (but not from the image). Because multi option will assume that
either crop or preview is enabled and will always ignore other content like
with ignorerest=true. These three class option will be ignored by the
package, which might lead to different behaviour between standalone and
main-document mode, but only for uncommon cases where multi is used
without declaring environments and with disabled cropping (crop/preview).
In order to support a potential varwidth option the varwidth is loaded if it
is available.

This is an extended feature, which requires substantial amount of extra
code and some advanced techniques to switch the font size. It might not work
correctly under all circumstances. Because of this it is disabled by default.
At the moment it does not take the class configuration file into account and
does not work for beamer standalone files.

24

extension=〈.extension〉

The image file extension (with leading dot) used for mode=image can be
selected using this option. By default the target output file extension of the
used LATEX compiler is used, i.e. ‘.pdf’ for pdflatex, lualatex and xelatex
and ‘.eps’ (converted from DVI) for latex.

build={〈build options〉}

This option allows to set the options used for building images from standalone
files. See section 5.4, especially Table 3 for further details.

5.3 Macros

The following user macros are provided by the standalone package. Further
macros are listed in section 6 which are defined by both the class and package
and can be used in standalone files but also in the main document.

\standaloneconfig{〈options〉}

This configuration macro accepts some of the package options described in
section 5.2. These options are group, mode, extension and build, which can be
changed for different included standalone files.

If both the standalone class and package is used together this macro
can also be used to set the class options as described in section 4.3.

\includestandalone[〈options〉]{〈file〉}

This sophisticated macro can be used instead of \input to include standalone
files. Its behaviour is controlled by the mode package option. This macro can
either include the source code in the same way as \input (mode=tex), include
the output file (PDF, EPS) using \includegraphics (mode=image), try first
the output file and use the source file if it is available (mode=image|tex),
build the output file from the source file either always (mode=build), only if
the image files does not exist (mode=buildmissing) or only if the source file
is newer (mode=buildnew). See also the section 5.4 for further details.

The 〈file〉 argument must be the file name of the standalone source file with-
out the extension. The macro accepts the same 〈options〉 as \includegraphics
as well as any options suitable for \standaloneconfig. This means that the
source file can also be resized and rotated in ‘tex’ mode like an image. TODO:
In this mode the package also tries to extract and apply the class options from
the standalone file and apply these to the included source. Unfortunately,
it can not be fully guaranteed that the standalone content will be displayed
identical in source code and image mode. Some settings might not be applied
in the same way and rounding differences may occur.

25

5.4 Building images from standalone files

Using the \includestandalone macro standalone files can be either included
directly as source files or as vector graphic images which are build from these.
The standalone package provides the feature to automatically build image
files from given standalone source files. This is controlled by the mode options.
This was already described in section 5.2 and 5.3.

This enables the user to switch easily between including source code or
images, either globally or only for selected standalone files. Using images has
the benefit that the included material, often complicated pictures, does not
have to be recompiled every time with the main document. This leads to
significant speed improvements. The drawback is a slight increase in file size,
because the material will have its own file headers. Also any settings done
in the main document which would affects the source code will not have an
effect on the image. This can be positive or negative dependent on the case.

An extended feature is the automatic building of images from the stan-
dalone files, either always or only if the source files are newer than the existing
image files. In this cases the \includestandlone macro will call the LATEX
compiler on the standalone files in question to produce the images, then
include these using \includegraphics. This requires the ‘-shell-escape’
compiler option to be set, otherwise the execution of shell commands is
disabled for security reasons.

The image files will normally be created in the current directory of the
main document, which is not necessarily the same directory where the source
files are located. Dependent on the used compiler settings, files in the current
directory will be found first before other directories are searched. Using
mode=buildnew newly build image files placed in the current directory will
therefore taken before older images files potentially located in the directory
of the standalone files. Because the exact directory of source files is not
accessible within LATEX documents, it is not possible to create the images
files always in the same directories as the source files. Compiler options like
‘-output-directory’ can be useful to influence the output directory of the
build images. However, these options must be used with the internal compiler
run, i.e. by setting build={latexoptions=〈...〉} appropriately, not (only) on
the main LATEX compiler run.

If the build process fails a warning is issued and the source code will be
included instead. It should be noted that failure detection is not perfect and
might lead to false positives or negatives.

6 Common macros

The following conditional macros are defined by both the standalone class
and package, but react differently when the code is compiled standalone or
as part of a main document.

26

Table 3: Build settings

Build setting Description Default value

latex LATEX compiler to be used Same as main compiler
latexoptions Command line options for compiler -interaction=batchmode -shell-escape -jobname ’\buildjobname ’

jobname Jobname for build compiler run \file

command Full build shell command \latex \space \latexoptions \space \file

postcommand Command executed after main
command, to produce final output
file

dvips -o ’\file.eps’ ’\file.dvi’ (DVI mode only)

Note: the settings (except ‘command’ and ‘postcommand’) can also be used as macros in other settings.
The given file name is available (without extension) as \file.

\ifstandalone

Both the class and the package provide the if-switch \ifstandalone, which
can be used to only include code if the file is compiled standalone. The switch
is set to \iftrue by the class and to \iffalse by the package.

The additional file standalone.tex also defines this switch by checking if
\documentclass was already used. It can be included with \input{standalone}
and is intended for specialised files which do not use the standalone class.

\IfStandalone{〈code for standalone mode〉}{〈code for main document〉}

This is the macro version of the \ifstandalone if-switch. It executes the
first argument only in standalone mode, i.e. when the file is compiled on its
own. When included in the main document the second argument is executed
instead. As mentioned in section 5.2 it can also be used to hide \usepackage
and similar macros from the extraction scanner of the sort option. The
macro and its arguments is not printed into the .stp file.

\onlyifstandalone{〈code〉}

This macro is similar to \IfStandalone but only has takes one argument
which is executed only in standalone mode, but ignored when compiled as
part of a main document. As mentioned in section 5.2 it can also be used
to hide \usepackage and similar macros from the extraction scanner of the
sort option. The macro and its argument is not printed into the .stp file.

27

7 Usage Examples

Example 1: Use of standalone package.
% Main file
% Real document class:
\documentclass{article}

% Use the ’standalone’ package:
\usepackage{standalone}

% Load all packages needed for all sub-files:
\usepackage{tikz}

% Inside the real ’document’ environment
% read the sub-file with ’\input’
\begin{document}
% ...
\begin{figure}

\input{subfile}
\caption{A subfile}

\end{figure}
% ...
\end{document}

Example 2: Use of standalone class.
% A sub-file (e.g. picture) using the ’standalone’ class:
% Use ’standalone’ as document class:
\documentclass{standalone}

% Load packages needed for this TeX file:
\usepackage{tikz}

% Surround TeX code with ’document’ environment as usually:
\begin{document}
% Add your TeX code, e.g. a picture:
\begin{tikzpicture}

\draw (0,0) rectangle (2,1) node [midway] {Example};
\end{tikzpicture}
\end{document}

28

Example 3: Effective code if compiled standalone.
\documentclass{article}

\newenvironment{standalone}{\begin{preview}}{\end{preview}}
\input{standalone.cfg}
% which by defaults loads:
% \PassOptionsToPackage{active,tightpage}{preview}
\usepackage{preview}

\usepackage{tikz}

\begin{document}
\begin{standalone}
\begin{tikzpicture}

\draw (0,0) rectangle (2,1) node [midway] {Example};
\end{tikzpicture}
\end{standalone}
\end{document}

Example 4: Effective code if included in a main document.
\begingroup
\begin{tikzpicture}

\draw (0,0) rectangle (2,1) node [midway] {Example};
\end{tikzpicture}
\endgroup
\endinput

29

	Installation
	Installation with TeX Live
	Installation with MikTeX
	Manual Installation from CTAN
	Dependencies

	Bug reports, feature requests and other feedback
	Introduction
	Quick instructions
	Version update and backwards compatibility
	Similar packages and classes

	Usage of the standalone class
	Basic usage
	Class options
	Macros and environments
	Support for Beamer Presentations
	Class configuration file
	Conversion to images
	Simple TeX File
	FAQ / Troubleshooting

	Usage of the standalone package
	Basic usage
	Package options
	Macros
	Building images from standalone files

	Common macros
	Usage Examples

