
A Document Class and a Package for handling

multi-files projects

Federico Garcia

2012/05/23

Abstract

With the subfiles set, the typesetting of a multi-file project consisting of
one main file and one or more subsidiary files (subfiles) is more comfortable,
since the user can LATEX either the main file, which will \input the subfiles
normally, or the subfiles by themselves, which take the preamble of the main
file and become self-sufficient LATEX documents.

1 Introduction

LATEX commands \include and \input allow for the creation of different input
files to be typeset jointly into a single output. The advantages of this are evi-
dent in the creation of large documents with many chapters, but there are also
other circumstances in which the author might want to use this feature. I have
used it particularly for long-coded examples, tables, figures, etc.1, which require a
considerable amount of trial-and-error.

In this process the rest of the document is of little use, and it can even dis-
turb.2 Frequently, one ends up wanting to work only on the new file, which means
following three steps:

• Create a new file, and copy-paste in it the preamble of the main file;

• Work in the example, typeset it alone as many times as necessary;

• When the result is satisfactory, delete the preamble from the new file (and
the \end{document}!), and \include or (more frequently) \input it from
the main file.

It is desirable to reduce these three steps to the only interesting one, the middle
one. This would mean that each new, subordinated file (henceforth, ‘subfile’)
should be both part of a project and a self-sufficient LATEX document, depending

1In my case most times it has been musical examples, whose code in MusiXTEX is long,
intrincate, and barely readable.

2For example, the error messages indicate not only a wrong line number, but even the wrong
file.

1



on whether it is LATEXed or \included/\input. This is what the set of class and
package under the name subfiles is intended for.

The main idea behind it is the redefinition of \documentclass and the ‘en-
vironment’ document; while these two features of LATEX are important to keep
unchanged, subfiles changes them, as far as I know, harmlessly, and I have took
care of undoing the changes when finished. This is the first version of subfiles,
and although I have tried it a few times, it is still susceptible of conflicting with
other packages and/or classes.

2 Usage

2.1 Setting up

The files involved have the following basic structures:

MAIN FILE SUBFILE
⟨some preamble⟩ \documentclass[⟨main file name⟩]{subfiles}

\usepackage{subfiles} \begin{document}

⟨more preamble⟩ ⟨text, graphics, etc.⟩
\begin{document} \end{document}

⟨text⟩
\subfile{⟨subfile name⟩}

⟨more text⟩
\end{document}

The subfiles package is to be loaded in the main file of a LATEX project,
and the subfiles class is to be loaded by each subordinate file. Note that the
subfiles class handles only one ‘option’ (whose presence is actually mandatory),
the name of the main file. The name should be given following TEX conventions:
.tex is the default extension; the path has to be indicated (/, not \) if the main
file is in a different directory from the subfile; spaces are gobbled (at least under
Windows).

2.2 Results

This done, LATEXing either the main or the subordinate file produces the following
results:

• If the subfile is typeset by itself, it takes as preamble the one of the main
file (including its \documentclass). The rest is typeset normally.

• If the subordinated file was \subfile’d, it ignores everything before and
including \begin{document}, and the ignores \end{document} too. (The
body of the file, nothing else, is effectively \input.)

The \subfile command is more like \input than \include in the sense that it
does not start a new page. It allows nesting, but there is no exclusion mechanism
analogous to \includeonly.

2



2.3 Further details and warnings

In all truth, a subfile typeset by itself does not exactly take the preamble of the
main file, but anything outside \begin{document} and \end{document}. This has
two consequences: a) the user can make some commands to be read only when the
subfiles are typeset by themselves—which in any case are processed as part of the
preamble; but also b) the user has to be careful even after \end{document} (in
the main file), for any syntax error there will ruin the LATEXing of the subfile(s).

The preamble of the main file can \input (not \include nor \subfile) other
files (v.g. files with definitions and shorthand-commands), and the subfiles will
too. But it has to be kept in mind that each subfile is \input within a group, so
definitions made within them might not work outside. A good practice when using
subfiles (and also when not using it) is to make any definitions in the preamble
of the main file, avoiding confusion and allowing to find them easily.

In principle, nesting files with \subfile should work and has worked in my
tries, as far as every subfile loads the main file as its option to the subfiles class.
However, who knows, the behavior can be unpredictable in weird situations. In
any case, subfiles does not disable \include nor \input, which remain available
for free use.

subfiles class and package require the verbatim package (whose comment

environment is used to ignore the different parts of different files); this should not
be a problem since it makes part of the standard distribution of LATEX2ε.

3 The Implementation

3.1 The class

1 ⟨∗class⟩
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesClass{subfiles}[2012/05/23 Federico Garcia]

4 \RequirePackage{verbatim}

5 \DeclareOption*{\typeout{Preamble taken from file ‘\CurrentOption’}%

6 \let\preamble@file\CurrentOption}

7 \ProcessOptions

The first thing to do is to save the regular LATEX definitions of \document,
\enddocument, and \documentclass:
8 \let\old@document@subfiles\document

9 \let\old@enddocument@subfiles\enddocument

10 \let\old@documentclass@subfiles\documentclass

Now the document ‘environment’ is redefined and equaled to comment. As a
consequence, the body of the main file is ignored by LATEX, and only the preamble
is read (and anything that comes after \end{document}!). For \documentclass,
having been already loaded one (subfiles), it is redefined and equaled to
\LoadClass. The class and options of the main file are loaded identically.
11 \let\document\comment

12 \let\enddocument\endcomment

3



13 \let\documentclass\LoadClass\relax

Now it is possible to \input the main file, and then restore the original values
of \document, \enddocument and \documentclass. The backup commands are
\undefined to save memory. That’s it.
14 \input{\preamble@file}

Here it comes something not so obvious. In the usual situations, the
\preamble@file contains some \usepackage commands, which, at the end, make
@ no longer a letter. That is why the next part needs a \catcode command, group-
ing, and \global’s.
15 {\catcode‘\@=11

16 \global\let\document\old@document@subfiles

17 \global\let\enddocument\old@enddocument@subfiles

18 \global\let\documentclass\old@documentclass@subfiles

19 \global\let\old@document@subfiles\undefined

20 \global\let\old@enddocument@subfiles\undefined

21 \global\let\old@documentclass@subfiles\undefined}

22 ⟨/class⟩

3.2 The package

Any option will be ignored.

23 ⟨∗package⟩
24 \NeedsTeXFormat{LaTeX2e}

25 \ProvidesPackage{subfiles}[2012/05/23 Federico Garcia]

26 \DeclareOption*{\PackageWarning{\CurrentOption ignored}}

27 \ProcessOptions

28 \RequirePackage{verbatim}

The core of the package. It works by redefining the document ‘environment,’\skip@preamble

thus making the \begin and \end{document} of the subfile ‘transparent’ to the
inclusion. The redefinition of \documentclass is analogous, just having a required
and an optional arguments which mean nothing to \subfile.

29 \newcommand{\skip@preamble}{%

30 \let\document\relax\let\enddocument\relax%

31 \newenvironment{document}{}{}%

32 \renewcommand{\documentclass}[2][subfiles]{}}

Note that the new command \subfile calls for \skip@preamble within a\subfile

group. The changes to document and \documentclass are undone after the inclu-
sion of the subfile.

33 \newcommand\subfile[1]{\begingroup\skip@preamble\input{#1}\endgroup}

34 ⟨/package⟩

4


