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1 Introduction

The tabstackengine package provides a front end to the stackengine package that
allows for the use of tabbing characters within the stacking arguments. Famil-
iarity with the syntax of the stackengine package is assumed. When
invoked, tabstackengine loads the stackengine package with the [usestackEOL]
option set, so that the end-of-line (EOL) character in certain stacking arguments
will be taken, by default, as \\, rather than a space (which is the default EOL
separator in stackengine).

With tabstackengine, command variations are introduced to allow several vari-
ants of tabbing within the macro arguments. The default tabbing character is



\fixTABwidth

\setstacktabbedgap

\setstackaligngap

\setstacktabulargap

the ampersand (&); however, the tabbing character can be reset to other values.

In most cases (where it makes sense), a stackengine macro name may be prepended
with the word tabbed, align, or tabular to create a new tabstackengine macro
that allows for tabbed arguments.

2 Tabbing Variations within tabstackengine

The tabstackengine package syntax allows three types of tabbing variation de-
noted by the words tabbed, align, and tabular in the macro name itself. In
the case of tabbed macros, the tabbed columns all share the same alignment,
as dictated by the \stackalignment setting or perhaps provided as an optional
argument in some macro forms.

In the case of align macros, the alignment in columns is alternately specified
as right, then left, efc., in the manner of the align environment of the amsmath
package.

Finally, in the case of tabular macros, an extra argument is passed to the
macro that specifies the left-center-right alignment for each individual column,
in the manner of {1ccr}.

3 Column Spacing within tabstackengine

Intercolumn space can be introduced to tabstackengine output in one of two
ways. First, there is a macro setting to force all columns to be the same
width (namely, the width of the widest entry in the stack), using the syntax
\fixTABwidth{T or F}. When set true, column space will be introduced to all
but the widest column of a stack, so as to make all columns of a width equal to
that of the widest column.

Secondly, each of the tabbing variations has the means to introduce a fixed
amount of space between columns. By default, the tabbed stacking macros add
no space (0pt) between adjacent columns, but this value can be reset with the
macro \setstacktabbedgap{length}.

In the case of the align stacking macros, there is never any gap introduced
after the right-aligned columns. However, the default gap introduced after the
left-aligned columns is, by default, 1em (the same gap as \quad). It can be reset
with the macro \setstackaligngap{length}.

For the tabular stacks, the default intercolumn gap is the value of \tabcolsep.



The default value may be reset with the macro \setstacktabulargap{length}.

Note that these \setstack...gap macros are for setting horizontal gaps be-
tween columns of a stack. They should not be confused with the \setstackgap
macro of stackengine that sets the vertical gap for long and short stacks.

4 Command Summary

Below are the new commands introduced by this package. When there are
multiple commands delimited by braces, any one of the commands within the
brace may be selected.

Shortstack
tabbed 1i t
\tabbe Shortunderstack lalignment]
\align Lo;;ﬁﬁiiﬁiﬁ;ck {tabbed EQL-separated string}
k
\tabular 3:2:2;:::2k {column alignments}
\paren
$ \brace Matrixstack[alignment] {tabbed EOL-separated string}$
\bracket g P €
\vert
\tabbed
stackon
\align stackunder » [stackgap] {tabbed anchor}{tabbbed argument}
stackanchor
\tabular {col. alignments}
tabbed Opt
\setstack{ align pgap{length} Initial Defaults: lem
tabular \tabcolsep

\fixTABwidth{T or F}
\setstackTAB{tabbing character}
\TABunaryLeft (\TABbinaryRight)
\TABunaryRight  (\TABbinaryLeft)
\TABbinary

The following macros are macros that can be used for parsing tabbed data
outside of a TABstack.

\readTABrow{row ID}{tab-separated string}
\TABcell{row ID}{column number}
\TABcells{row ID}



\TABstrut{row ID}
\TABstackMath
\TABstackText
\ensureTABstackMath{}

4.1 Command Examples

Below we give examples of the various types of commands made available

through the stackengine package.

Tabbed End-of-Line (EOL)-delimited Stacks

Here, the optional argument [1] defines the alignment of all the columns. The

default alignment is [c].
\tabbedShortunderstack [1] {A&B&CCC\\aaa&bbb&c\\1111&2&3%}

A B CCC
aaa bbbc
11112 3

Align End-of-Line (EOL)-delimited Stacks

In an align-stack, the column alignments will always be rlrl...

following the left-aligned columns is set by \setstackaligngap.

\stackMath$Z:\left\{\alignCenterstack{%
y=&mx+b,&0=&Ax+By+C\\y_1=&W_1,&y_2=&W_2}\right.$

7. y =mx + b, 0=Az+ By+C
"y = Wha, yo = Wa

Tabular End-of-Line (EOL)-delimited Stacks

The gap

In a tabular-stack, the alignment of each column is specified in a separate

leading argument.

\stackText\tabularLongstack{rllc}{%

9)& $y_1=mx+b$ &linear&*\\10)& $y_2=e"x$ &exponential&[23]}

9) y1 =mx +b linear *
10) y2 =€” exponential [23]



Matrix Stack

The Matrix-stacks are a tabbed variant of stackengine’s Vector-stacks.

\setstacktabbedgap{l.5ex}
$I = \bracketMatrixstack{1&0&0\\0&1&0\\0&0&1}$

100
I=1]010
001

Tabbed Stack

This variant of a tabbed-stack stacks exactly two items. Its arguments don’t
need to be protected. The optional argument is a stacking gap, as in the syntax
of the stackengine package.

\setstacktabbedgap{lex}
\tabbedstackon[4pt]{Jack&drove&the car&home.}{SN&V&D0O&IO}

SN V DO 10
Jack drove the car home.

Align Stack

This is for stacking two items with rlrl... alignment pattern.

\stackMath\setstackaligngap{3em}
\alignstackunder [10pt]{y=&mx+b,&0=&Ax+By+C}{y_1=&W_1,&y_2=&W_2}

y=mzx+b, 0=Axz+ By+C
y1 = W, y2 = Wa



Tabular Stack

This is for stacking two items with specifiable alignment pattern.

\stackMath\setstacktabulargap{lex}\tabularstackanchor [4pt]{rcl}’
{\bullet\bullet\bullet\bullet&\belowbaseline [-2pt]{\trianglel},
&\bullet\bullet\bullet\bullet},
{1 +3(4-3) &=&7-6/2}

LN A LN )

1+2(4-3) = 6-6/2

Fixed Tab Width (equal width columns, based on largest)

With this mode set, the stack will have fixed-width columns, based on the overall
widest entry.

\fixTABwidth{T}\setstacktabbedgap{lex}/,
$\left (\tabbedCenterstack [r]{1&34&544\\432432940&8\\89&123&1}\right)$

1 34 544
4324329 0 8

89 123 1

Setting the Stack Tabbing Character

By default, for the parsing of columns within a row, this package employs the &
character to delimit the columns. This value can be changed via \setstackTAB{},
where the argument is the newly desired tabbing character. It can be any of var-
ious characters, including a space token, if one wishes to use a space-separated
list to parse the columns. Generally, it may need to be changed if you are build-
ing a TABstack inside of an environment that already uses the & character as a
tab, such as the tabular environment for text or the various math environments
in the amsmath package.

Unary versus Binary Operators/Relations at Cell Ends

There are two things to keep in mind regarding TABstacked content. First,
a TABstack cell has no precise understanding up what content precedes it in
the cell to the immediate left, nor what content follows it in the cell to the
immediate right. It does, however know the overall height/depth of the content



across the whole row and creates a vertical “strut” of that height and depth,
which must, in some way, be applied to every cell in the row.

This vertical strut can be applied to the cell immediately prior to or immediately
following the cell content, as we shall see. However, such an action will have an
effect on math operators and relations found at the leading or trailing ends of
the cell content.

Math operators and relations can be categorized as unary or binary; some may
be both, depending on their usage context, such as the minus sign. When used
as a — b, the relation is binary, because it connects a and b in a mathematical
relationship. Note how space appears both before and after the minus sign.
Alternatively, when used as —, the minus sign operates only upon what follows,
in this case 7, to produce a negative. Note how no space is introduced between
the minus sign and 7.

Because a TABstack cell has no intimate knowledge of the adjacent cell content,
it is up to the user to employ his tabbing seperators in a way that produces the
desired result. By default, tabstackengine will place the strut after the cell
content. This means that any trailing math operator in a cell will present itself
in its binary form (regardless of what comes in the cell to the right), because
the strut will appear as trailing data against which the operator can be set.
Similarly, any leading math operator will present itself as unary (regardless of
what content appears in the cell to the left).

Thus, \tabbedLongstack{y =&-mx +& b} will present as y = —max + b, by de-
fault, with the trailing equal and plus signs as binary, and the leading minus
sign as unary. The package can reverse the default with the following declarative
modes: \TABunaryRight (identical to \TABbinaryLeft); as well as \TABbinary,
which will present both leading and trailing operators in their binary form. The
default can be restored with \TABunaryLeft (identical to \TABbinaryRight).

Without changing any of the package strut modes, an operator, such as minus,
can be forced into its unary mode by enclosing it in braces: {-}. Likewise, it
can be forced into its binary mode by placing empty braces on both sides of it:

{31k

The Macros \readTABrow, \TABcell(s), and \TABstrut

One of the nice features of tabstackengine is that it gives you access to its
parser, which can be used for tasks unrelated to building stacks. It provides
several macros, including \readTABrow{ident}{tab-separated-string} for digest-
ing a list and assigning it a global ID, in this case, “ident’. It also provides
\TABcells{ident} to tell you how many items are in the list named “ident’, as
well as the macro \TABcell{ident}{ column number} to provide the value of the



specified column from the ID’ed row. For example,

\setstackTAB{,}

\TABstackMath

\readTABrow{myident}{1,2, 3x , 4, 5,x72,,g,\textbf{bold 9}}
\TABcells{myident} items in dataset °‘myident’’\\

The 6th data item is \TABcell{myident}{6}\\

The 9th data item is \TABcell{myident}{9}

will yield the following result:

9 items in dataset “myident”
The 6th data item is z2
The 9th data item is bold 9

The result provided by \TABcell{ident}{column number} has been processed
in the following way: 1) leading and trailing spaces have been removed from
the column’s data, and 2) the column will have been processed in math mode if
\TABstackMath (see below) had been in force. Thus, placing the cell contents
in a box, \fbox{\TABcell{myident}{3}} is [3z]

If one, however, wished to access the raw data, with leading/trailing spaces
still intact (and ignoring the \TABstackMath setting), one can compose the
macro, \csname TABXidentX\romannumeral column number\endcsname, such
that \fbox{\csname TABXmyidentX\romannumeral 3\endcsname}, using the
above example, would give [ 3x |.

Finally, the macro \TABstrut{myident} provides a strut that spans the vertical
height of the complete row content. Here is \TABstrut{myident} (that has been
boxed with \fboxsep=0pt) compared to the boxed content of the row itself:

| 1232452%gbold 9. As you can see, the \TABstrut{myident} captures the
vertical extent of the complete row data, including the descending g and the
superscript of the 2. The \TABstrut{}, when paired with the column content,
is useful when one wishes to make all column entries of a row display with equal
height and depth, even when their native height varies from column to column.

\TABstackMath, \ensureTABstackMath, and \TABstackText

These macros are not needed when building stacks in tabstackengine. When
constructing TABstacks, their presence is superfluous because their companion
macros, \stackMath, \ensurestackMath, and \stackText, will carry over from
the stackengine package.

However, there is one application where their use is required. And that is



when you use the facilities of this package not to build TABstacks, but instead
use it to parse data with \readTABrow{}{} and present it with \TABcell{}{},
respectively. Notably \TABcell{}{} does not access the stackengine setting
for the status of \stackMath and therefore pays attention only to the current
setting specified by \TABstackMath.

One should note, however, that TABstacks pay attention to both settings.
Therefore, if EITHER \stackMath or \TABstackMath have been invoked,
the TABstack argument will be processed by \TABcell in math mode.
This is a good reason to avoid the “TAB” versions of these macros, unless em-
ploying them to parse data (and then, reset to \TABstackText when you are
done with parsing).

5 Known Bugs/Missing Features

1. No Horizontal Equivalent of \ TABstrut

Currently, there is no macro that provides the width of a column’s content.
I hope to remedy this deficiency in a future release.

2. Nothing Equivalent to \hline

This is not a bug, so much as a notation of a missing feature. Currently
there is nothing equivalent to \hline available for use in tabstackengine
arguments.
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6 Code Listing

\def\tabstackengineversionnumber{V1.10}
% tabstackengine initial release
% THIS MATERIAL IS SUBJECT TO THE LaTeX Project Public License

% V1.00 -Adopted beta version 0.21 as initial release version 1.0
% V1.10 -Corrected unary/binary problem for left end of tabbed cell content;

% -Added \TABunaryLeft (\TABbinaryRight) for " cell{} ";

% added \TABunaryRight (\TABbinaryLeft) for " {}cell ";

% added \TABbinary for " {}cell{} ";

% The default is \TABunaryLeft (V1.00 wrongly equivalent to \TABbinary)
% This removes need to brace unary negatives at lead of cell.

% -Corrected bug of trailing \frac, noted in V1.00, by adding a

% \relax to definition of \@postTAB in \readTABrow.

yA

\ProvidesPackage{tabstackengine}

[2014/02/19 (\tabstackengineversionnumber) tabbed stacking]
\RequirePackage [usestackEOL] {stackengine} [2013-10-15]
\RequirePackage{calc}

\newtoggle{@doneTABreads}
\newcounter{TAB@stackindex}
\newcounter{TABcellindex@}
\newlength\maxTAB@width

\newcommand\setstackTAB[1]{%
\ifstrempty{#1}{\def\TABCchar{ }}{\def\TAB@char{#1}}}
\expandafter\define@processTABrow\expandafter{\TAB@charl}/,
}

\newcommand\define@processTABrow[1]{/
\def\@processTABrow##1#1##2| | {/

\def\@preTAB{##1}/,
\def\@postTAB{##2}/
Y
}
\setstackTAB{&}

\newcommand\readTABrow [2]{%

\edef\row@ID{#1}%

\togglefalse{@doneTABreads}/,

\edef\@postTAB{\unexpanded{#2\relax}\expandonce{\TAB@char}}

\setcounter{TABcellindex@}{0}%

\whileboolexpr{ test {\nottoggle{@doneTABreads}}}{%
\stepcounter{TABcellindex@}/,
\expandafter\@processTABrow\@postTAB| |7
\global\csedef{TABX\row@ID X\roman{TABcellindex@}}{\expandonce\@preTAB}/
\setbox0=\hbox{%

\stack@delim\TABcell{\row@ID}{\theTABcellindex@}\stack@delim}
\ifdim\wd0>\maxTAB@width\setlength{\maxTAB@width}{\the\wd0O}\fiY
\expandafter\ifstrempty\expandafter{\@postTAB}{/

\toggletrue{@doneTABreads}

HY%

10



Y
\expandafter\xdef\csname \row@ID TABcells\endcsname{\arabic{TABcellindex@}}/,
\find@TABstrut{#1}%

}

\newcommand\find@TABstrut [1]{/
\def\@accumulatedTAB{}%
\setcounter{TABcellindex@}{0}%
\expandafter\protected@edef\csname Q@#1TABtextblob\endcsname{}/,
\whileboolexpr{test {\ifnumless{\theTABcellindex@}{\TABcells{#1}}}}{/
\stepcounter{TABcellindex@}/,
\protected@edef\@accumulatedTAB{/,
\@accumulatedTAB\TABcell{#1}{\theTABcellindex@}}/,
Yh
\global\csedef{@#1TABtextblob}{\expandonce\@accumulatedTAB}%
}

\def\p@Tstrut#1{\protect\TABstrut{#1}}

\newcommand\TABunaryLeft{/,
\def\TABOstrutLeftA{}/,
\def\TAB@strutRightA{\p@Tstrut{i}}/
\def\TAB@strutLeftB{}/,
\def\TAB@strutRightB{\p@Tstrut{ii}}’
\def\TAB@strutLeftC{}%
\def\TAB@strutRightC{\p@Tstrut{\TABGprefix}}’

}

\let\TABbinaryRight\TABunaryLeft

\newcommand\TABunaryRight{%
\def\TAB@strutLeftA{\p@Tstrut{i}}’
\def\TAB@strutRightA{}%
\def\TAB@strutLeftB{\p@Tstrut{ii}}/
\def\TAB@strutRightB{}%
\def\TAB@strutLeftC{\p@Tstrut{\TABOprefix}}%
\def\TAB@strutRightC{}%

}

\let\TABbinaryLeft\TABunaryRight

\newcommand\TABbinary{/
\def\TABO@strutLeftA{{}}%
\def\TAB@strutRightA{\p@Tstrut{i}}%
\def\TAB@strutLeftB{{}}/
\def\TAB@strutRightB{\p@Tstrut{ii}}%
\def\TAB@strutLeftC{{}}%
\def\TABO@strutRightC{\p@Tstrut{\TAB@prefix}}/,

}

\TABunaryLeft

\newcommand\TAB@delim[1]{#1}%

\newcommand\TABstackMath{%
\renewcommand\TAB@delim[1] {\ensuremath{##1}}/,

}

\newcommand\TABstackText{/
\renewcommand\TAB@delim[1] {##1}

}

11



\newcommand\TABcell [2] {\TAB@delim{%
\ignorespaces\csname TABX#1X\romannumeral#2\endcsname\unskip}}

\newcommand\TABcells[1]{\csname #1TABcells\endcsname}

% NOTE THAT THE STRUT IS NOT YET TYPESET, SINCE WE DO NOT YET KNOW
% WHETHER \@#1textblob IS TO BE INVOKED IN MATH MODE OR NOT
\newcommand\TABstrut [1]{\vphantom{\csname @#1TABtextblob\endcsname}}

\newcommand\tabbedShortstack[2] [\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Shortstackl}}

\newcommand\alignShortstack[1]{%
\eTAB@stack{}{#1}{A}{\Shortstack}}

\newcommand\tabularShortstack[2]{%
\@TAB@stack{}{#2}{#1}{\Shortstack}}

\newcommand\tabbedShortunderstack[2] [\stackalignment]{/,
\@TAB@stack{#1}{#2}{D}{\Shortunderstackl}}

\newcommand\alignShortunderstack[1]{%
\@TAB@stack{}{#1}{A}{\Shortunderstack}}

\newcommand\tabularShortunderstack[2]{%
\@TAB@stack{}{#2}{#1}{\Shortunderstack}}

\newcommand\tabbedLongstack[2] [\stackalignment]{/
\@TABOstack{#1}{#2}{D}{\Longstack}}

\newcommand\alignLongstack[1]1{
\@TAB@stack{}{#1}{A}{\Longstack}}

\newcommand\tabularLongstack [2]{/
\@TAB@stack{}{#2}{#1}{\Longstack}}

\newcommand\tabbedLongunderstack[2] [\stackalignment]{/
\@TAB@stack{#1}{#2}{D}{\Longunderstack}}

\newcommand\alignLongunderstack[1]{/
\@TAB@stack{}{#1}{A}{\Longunderstack}}

\newcommand\tabularLongunderstack [2]{%
\@TAB@stack{}{#2}{#1}{\Longunderstack}}

\newcommand\tabbedCenterstack[2] [\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Centerstack}}

\newcommand\alignCenterstack[1]1{/
\@TAB@stack{}{#1}{A}{\Centerstack}}

\newcommand\tabularCenterstack[2]{/,
\@TAB@stack{}{#2}{#1}{\Centerstackl}}

\newcommand\tabbedVectorstack[2] [\stackalignment]{%
\ensureTABstackMath{\@TAB@stack{#1}{#2}{D}{\Vectorstack}}}
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\newcommand\alignVectorstack[1]{%
\ensureTABstackMath{\@TAB@stack{}{#1}{A}{\Vectorstack}}}

\newcommand\tabularVectorstack[2]{/
\ensureTABstackMath{\@TAB@stack{}{#2}{#1}{\Vectorstack}}}

\newcommand\parenMatrixstack[2] [\stackalignment]{%
\ensureTABstackMath{\left (\@TAB@stack{#1}{#2}{D}{\Vectorstack}\right)}}

\newcommand\braceMatrixstack[2] [\stackalignment]{%
\ensureTABstackMath{\left\{\@TAB@stack{#1}{#2}{D}{\Vectorstack}\right\}}}

\newcommand\bracketMatrixstack[2] [\stackalignment]{%
\ensureTABstackMath{\left [\@TABOstack{#1}{#2}{D}{\Vectorstack}\right]}}

\newcommand\vertMatrixstack[2] [\stackalignment]{’
\ensureTABstackMath{\left | \@TABO@stack{#1}{#2}{D}{\Vectorstack}\right|}}

\newcommand\@TAB@stack [4]{%

\setlength{\maxTAB@width}{Optl}%

\let\sv@stackalignment\stackalignment?

\edef\stackalignment{#1}%

\@readMANYrows{#2}/

\edef\TAB@narg{\narg}%

\setcounter{TAB@stackindex}{01}/

\whileboolexpr{test {\ifnumless{\theTAB@stackindex}{\TAB@narg}}}{/
\stepcounter{TAB@stackindexl}
\edef\TAB@prefix{\roman{TAB@stackindex}}%
\protected@edef\TABrow@data{\csname arg\TAB@prefix\endcsnamely,
\def\@tmp{\readTABrow{\TAB@prefix}}
\expandafter\@tmp\expandafter{\TABrow@datal

Y

\setcounter{TABcellindex@}{0}%
\whileboolexpr{test {\ifnumless{\theTABcellindex@}{\TABcells{i}}}}{%
\def\col@stack{’
\TAB@strutLeftA/,
\TABcell{i}{\theTABcellindex@}/,
\TAB@strutRightAY,
Yh
\stepcounter{TABcellindex@}/,
\@getTABalignment{#3}{\theTABcellindex@}/
\ifboolexpr{’
test {\ifnumgreater{\theTABcellindex@}{1}}%
}H\addeTABegap{#3}{\theTABcellindex@}}{}%
\setcounter{TAB@stackindex}{1}
\whileboolexpr{test {\ifnumless{\theTAB@stackindex}{\TAB@narg}}}{%
\stepcounter{TAB@stackindexl}
\edef\TAB@prefix{\roman{TAB@stackindex}}%
\protected@edef\col@stack{\col@stack\SEP@char?,
\TAB@strutLeftC}
\TABcell{\TAB@prefix}{\theTABcellindex@}}
\TAB@strutRightC/
Y
Yh
\iftoggle{fixed@TABwidth}Y
{\makebox [\the\maxTABQwidth] [\stackalignment]{/

13



\expandafter#4\expandafter{\col@stack}}}/
{\expandafter#4\expandafter{\col@stack}}’
Y
\let\stackalignment\sv@stackalignment?,
}

\newcommand\tabbedstackon [3] [\stackgapl{%
\@TABstackonunder{#1}{#2}{#3}{D}{\stackon}}

\newcommand\alignstackon[3] [\stackgapl{%
\@TABstackonunder{#1}{#2}{#3}{A}{\stackon}}

\newcommand\tabularstackon[4] [\stackgap]{/
\@TABstackonunder{#1}{#3}{#4}{#2}{\stackon}}

\newcommand\tabbedstackunder [3] [\stackgap] {/
\@TABstackonunder{#1}{#2}{#3}{D}{\stackunder}}

\newcommand\alignstackunder [3] [\stackgapl {%
\@TABstackonunder{#1}{#2}{#3}{A}{\stackunder}}

\newcommand\tabularstackunder [4] [\stackgap] {%
\@TABstackonunder{#1}{#3}{#4}{#2}{\stackunder}}

\newcommand\tabbedstackanchor [3] [\stackgap] {/%
\@TABstackonunder{#1}{#2}{#3}{D}{\stackanchor}}

\newcommand\alignstackanchor [3] [\stackgap] {%
\@TABstackonunder{#1}{#2}{#3}{A}{\stackanchor}}

\newcommand\tabularstackanchor [4] [\stackgap] {%
\@TABstackonunder{#1}{#3}{#4}{#2}{\stackanchor}}

\newcommand\@TABstackonunder [56]{/
\setlength{\maxTAB@width}{Opt}/,
\let\sv@stackalignment\stackalignment?’,
\readTABrow{i}{#2}/,
\readTABrow{ii}{#3}/
\setcounter{TABcellindex@}{0}%
\whileboolexpr{test {\ifnumless{\theTABcellindex@}{\TABcells{i}}}}{%
\stepcounter{TABcellindex@}/,
\@getTABalignment{#4}{\theTABcellindex@}/
\ifboolexpr{’
test {\ifnumgreater{\theTABcellindex@}{1}}%
}\addeTAB@gap{#4}{\theTABcellindex@}}{}%
\iftoggle{fixed@TABwidth}J,
{\makebox [\the\maxTAB@width] [\stackalignment]{%
#5[#1] {\TAB@strutLeftA\TABcell{i}{\theTABcellindex@}\TAB@strutRightA}/,
{\TAB@strutLeftB\TABcell{ii}{\theTABcellindex@}\TAB@strutRightB}}}%
{#5[#1]{\TAB@strutLeftA\TABcell{i}{\theTABcellindex@}\TAB@strutRightA}%
{\TAB@strutLeftB\TABcell{ii}{\theTABcellindex@}\TAB@strutRightB}}%
Yh
\let\stackalignment\sv@stackalignment?
}

\newcommand\@getTABalignment [2]{Y
\ifstrequal{#1}{D}{}{% T, DO NOTHING (USE \stackalignment)
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\ifstrequal{#1}{A}{/

\ifnumequal{1}{#2}{7%
\def\stackalignment{r}}{/ A, 1st ELEMENT, SET TO r
\if 1l\stackalignment}
\def\stackalignment{r}\else/, A, SWITCH 1 TO r

\def\stackalignment{1}\fi}}{/ A, SWITCH r TO 1
\set@tabularcellalignment{#1}{#2}), tabular, READ #2 location
Yh
Yh
}

\def\tabbed@gap{Opt}
\def\align@gap{lem}
\def\tabular@gap{\tabcolsep}

\newcommand\setstacktabbedgap[1]{\def\tabbed@gap{#1}}
\newcommand\setstackaligngap[1]{\def\align@gap{#1}}
\newcommand\setstacktabulargap[1]{\def\tabular@gap{#1}}

\newcommand\add@TAB@gap [2] {/,
\ifstrequal{#1}{D}{\hspace{\tabbed@gap}}{/
\ifstrequal{#1}{A}{%
\if r\stackalignment\hspace{\align@gap}\£fi¥
Hi
\hspace{\tabular@gapl}’
Y
Y
}

\newcounter{TABalignmentindex@}

\newcommand\set@tabularcellalignment [2]{%
\setcounter{TABalignmentindex@}{1}%
\edef\tabular@settings{#1.}J
\whileboolexpr{test {\ifnumless{\theTABalignmentindex@}{#2}}}{%
\stepcounter{TABalignmentindex@}%
\edef\tabular@settings{\expandafter\@gobble\tabular@settings.}/
Yh
\expandafter\@getnextTABchar\tabular@settings\\’ GET NEXT TAB ALIGNMENT
\if 1\@nextTABchar\edef\stackalignment{l}\else’
\if r\@nextTABchar\edef\stackalignment{r}\else,
\if c\@nextTABchar\edef\stackalignment{c}\fi%
\fi% IGNORE IF NOT 1, c, OR r
\fiy
}

\def\@getnextTABchar#1#2\\{\gdef\@nextTABchar{#1}}
\newtoggle{fixed@TABwidth}
\newcommand\fixTABwidth[1]{%

\if T#1\toggletrue{fixed@TABwidth}\else\togglefalse{fixed@TABwidth}\fi}
}
\fixTABwidth{F}

\newcommand\ensureTABstackMath[1] {\TABstackMath#1\TABstackText}

15



\endinput
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