
The TikZ-dependency package

Daniele Pighin

daniele.pighin@gmail.com

http://danielepighin.net/cms

Version 1.1, January 2012

If your work is in any way connected with linguistics or natural language processing, chances are high that
the moment will come when you will have to draw a dependency graph:

NN MD VB PRP$ NN RBR

TikZ-dependency will make your life easier

root

nsubj

aux poss

dobj

advmod

ARG0 ARG1 A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

a student whose mother and his father peter knows

ungrammatical

PRP$ NN RB VBZ VBG NN

M
y

do
g

al
so

lik
es

ea
tin

g

sa
us

ag
e

root

po
ss

nsubj

advmod xcomp dobj

TikZ already has all the needed facilities to draw and style a dependency graph, but diving into the docu-
mentation just to understand how to draw one or two trees may turn out to be rather overwhelming.

TikZ-dependency is pretty flexible, and it can easily be used to draw quite complex graphs around sequences
of tokens, not necessarily related to dependency parsing or to language, as shown in this useless toy example:

You can easily exaggerate if you feel like doing so

link1

link2

link3

link4

or this?

ef(x)

g(x)

link6
link7

Look at this one!

Hopefully, this package will make your life a little bit easier, and allow you to draw a dependency graph
without too much TikZ prior knowledge. It will also allow you to draw cute graphs, which won’t increase
your impact factor but may help making your papers look more pleasant and elegant.

mailto:daniele.pighin@gmail.com
http://danielepighin.net/cms

Contents

1 Installation 3

2 A step-by-step introduction 3

2.1 An environment to draw dependency graphs . 4

2.2 Writing the sentence . 4

2.3 Adding dependencies . 5

2.4 Getting word spacing right . 5

2.4.1 Setting the space between every two words . 5

2.4.2 Spacing word individually . 6

2.5 Adding a root node . 7

3 Multiple layers of text 7

4 More control over edges 9

5 Node groups and group linking 17

6 Styling text, edges and labels 18

6.1 Using themes . 18

6.2 Styling elements individually . 22

6.3 Defining your own styles . 26

7 Interaction with TikZ 27

8 Answers to frequent or interesting questions 29

8.1 How do I change the shape of label nodes? . 29

8.2 How do I draw bubble parses? . 30

A TikZ crash course 31

A.1 \pgfkeys and \tikzset . 31

A.2 Basic styling notions . 32

A.2.1 Outline properties . 33

A.2.2 Area properties . 34

A.2.3 Text properties . 34

Index 35

1 Installation

The simplest and fastest way to get things working is to copy the style file tikz-dependency.sty in the
root directory of your latex project.

Alternatively, you can install it as you would install any other LATEX package, by copying it in some directory
searched by LATEX and running texhash. The texmf directory under your home directory is most likely one
of such directories (even though there are chances that it does not exist). If there is no texmf directory
under your home, than create it:

$ cd ~

$ mkdir -p texmf

Extract the TikZ-dependency under this directory:

$ cd texmf

$ tar xvzf /path/to/tikz-dependency.tar.gz

Run texhash to let LATEX know about the newly installed package:

$ texhash texmf

That should do it. Refer to LATEX documentation for more details or in case of non-standard LATEX instal-
lations.

Please, note that PGF/TikZ version 2.10 is required for TikZ-dependency to work as expected.

If TikZ is not installed on your system, you can easily install it in the same way. Visit http://sourceforge.
net/projects/pgf/ with your favorite browser, download the latest version of the package and uncompress
in some of the directories searched by LATEX. The texmf directory under your home directory should be a
good place to start:

$ cd ~

$ unzip /path/to/pgf_version.zip -d texmf

Run texhash:

$ texhash texmf

Everything should be fine now. For more detailed instructions on how to install TikZ, please re-
fer to its manual at http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/

pgfmanual.pdf.

To use TikZ-dependency, the first thing that you will need to do is to require it in your preamble:

\usepackage{tikz-dependency}

TikZ-dependency will automatically load TikZ and its other requirements.

2 A step-by-step introduction

In this section you will see how simple it is to draw a dependency graph. We will go throw all the required
steps one by one, from the creation of a suitable environment, to the actual drawing of the graph, to the
optional steps that can make your graph look nicer.

We will start by trying to reproduce the following example:

My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

3

http://sourceforge.net/projects/pgf/
http://sourceforge.net/projects/pgf/
http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

But first let’s agree on some terminology. I will call words the tokens of the sentence, and dependencies
the relations between words. A dependency actually consists of two entities: the edge between the two
words and its label, which is the type of the relation.

2.1 An environment to draw dependency graphs

The first step will be to create a suitable environment to draw your dependency graphs.

\begin{dependency}[〈key-value-pairs〉]
〈environment contents〉

\end{dependency}

All the commands and configuration keys that you will see in this document are available within a
dependency environment. Since it is an overloaded version of tikzpicture, all the things that you
would do within a tikzpicture environment (such as drawing paths, edges, nodes, whatever) you can
also do within a dependency. At the moment, the only reason why you’d rather use a dependency

environment is because you can pass it some optional configuration keys (i.e., [〈key-value-pairs〉]) that
can affect the style of the whole dependency graph. The documentation of these configuration keys is
scattered around the documentation, though many of them are described in Section 6.

So, to draw a new dependency tree you will generally start by writing something like this:

\begin{dependency}

% The code to actually draw the

% dependency graph will go here

\end{dependency}

At this stage it looks pretty empty, so let’s get started and fill it up with some contents.

2.2 Writing the sentence

\begin{deptext}[〈key-value-pairs〉]
〈environment contents〉

\end{deptext}

The deptext environment is used to lay out the words of the parsed sentence.

Within deptext, you will write a sentence separating each word with \&, similarly to what you would do
in a tabular environment. Please, not that in this case the separator is actually a LATEX command (i.e.,
a backslash followed by an ampersand), and not just a simple ampersand. To terminate the sentence,
add the command \\ (i.e., two consecutive backslashes) after the last word, just as you would do to end
a row in a table. The [〈key-value-pairs〉] can bee used to change the way the sentence looks, and more
details about it are coming soon.

After adding the deptext environment with the text of our example sentence, the incomplete dependency
graph would look like this:

My dog also likes eating sausage

\begin{dependency}

\begin{deptext}

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\end{dependency}

For the TikZ-savvy user, deptext is just a wrapper around TikZ’s own matrix environment. The matrix is
a matrix of nodes, with nodes in empty cells and some default styling. All the [〈key-value-pairs〉] passed
to the deptext are first parsed by TikZ-dependency, then handed to the underlying matrix. If you know
what you are doing and you want more control on the final result, you can have it.

4

2.3 Adding dependencies

\depedge[〈key-value-pairs〉]{〈from-word〉}{〈to-word〉}{〈label〉}
This command is used to add dependencies between words. The [〈key-value-pairs〉] argument is op-
tional, and it can be used for styling the edge and its label (again, we will come to that part shortly).
The three mandatory arguments define the origin and destination of the dependency edge, and the
label of the dependency. The arguments {〈from-word〉} and {〈to-word〉} are the offsets of the words to
be linked, counting from 1. {〈label〉} is just any string, to be used as a label for the edge. \depedge

commands should be issued after closing the deptext environment.

To draw an edge between the words eating and sausage in the example, you would set {〈from-word〉} to 5,
{〈to-word〉} to 6 and {〈label〉} to dobj. After adding this first edge, the example looks as follows:

My dog also likes eating sausage

dobj

\begin{dependency}

\begin{deptext}

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\depedge{5}{6}{dobj}

\end{dependency}

By repeating this operation for all the dependencies in the sentence, we end up with a first complete version
of the dependency tree:

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

As you can see, TikZ-dependency automatically does some basic routing of the edges of the graph, by
drawing dependency edges higher or lower depending on how far apart the two words are. The graph looks
decent at this stage, but it looks a little bit cramped and it could definitely use some more space between
the words.

2.4 Getting word spacing right

You can either add some space between all words, or you can add some space between two specific words.
Let’s see how it is done.

2.4.1 Setting the space between every two words

When I first introduced the deptext environment, I said in passing that it can take some optional arguments.
Since deptext is a wrapper around TikZ’s own matrix, if you know some TikZ you can pass to deptext any
key-value pairs that matrix would understand. If you have absolutely no idea of how optional parameters
(key-value configuration options) work in TikZ, you are warmly invited to take a look at Appendix A. If
you do not understand what is going on, you will be able to copy the example but your ability to exploit
the flexibility of the package will be largely impaired.

5

As far as we are concerned here, what we want to discuss is the /tikz/column sep configuration key, which
can be used to add more space between all the words in the sentence.

In this documentation, I will always use the fully qualified name of a key when documenting it (see, for
example, the description of /tikz/column sep immediately below. Anyway, you are not required to use the
fully qualified name of keys when using them, and using their base name (e.g., column sep) is sufficient. In
fact, in the examples I will generally use the shorter form.

/tikz/column sep=〈length〉 (default 0cm)

If you want to add, say, 0.2cm between every two words, you can do it so by passing column sep=0.2cm

as the optional argument of the deptext environment.

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

It looks better already, but the fact that some dependency labels are longer than the horizontal segment
of the edge doesn’t look to nice. So, we could increase the space between all the words, for example to
0.7cm:

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=0.7cm]

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

Now the labels are fine, but the words are a little bit too far apart, at least for my taste. So I would rather
go back to /tikz/column sep=0.2, and find a more precise way of spacing only the problematic word pairs.
In this case, they are adjacent words connected by a dependency with a long label, i.e., My/dog, also/likes
and likes/eating.

2.4.2 Spacing word individually

Additional space between two words can be added by using the optional argument of the \& command that
we used to separate words. For example, writing \&[0.5cm] will add 0.5cm to the default word spacing set
with via the column sep option. If we take care of the three problematic pairs individually, we can obtain
something like this:

6

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \&[.5cm] dog \& also \&[.7cm] likes \&[.4cm] eating \& sausage \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

2.5 Adding a root node

If you want to add a to the dependency graph, you can do so by means of the \deproot command.

\deproot[〈key-value-pairs〉]{〈root-offset〉}{〈label〉}
It is basically a variant of \depedge. Instead of connecting two words, it will create a node labeled
〈label〉 just above the word having offset 〈root-offset〉, and an arrow between them. In our example, the
root word is the verb likes, which occupies the fourth position:

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

root

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \&[.5cm] dog \& also \&[.7cm] likes \&[.4cm] eating \& sausage \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\deproot{4}{root}

\end{dependency}

This completes the crash course on the basics of dependency graph drawing. The next sections will tell you
how to control edge positioning, how to build more complicated graphs with several layers of text, how to
style the graphs to your liking and how to include your graphs in larger pictures.

3 Multiple layers of text

When drawing a dependency graph it is common to have a layer of part-of-speech (POS) tags just above the
words. Achieving this with TikZ-dependency is pretty straightforward. Since the deptext environment is
already a matrix, all you have to do is to add another row of text to the matrix:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

7

\begin{dependency}

\begin{deptext}[column sep=.5cm]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

In this case, we have added the POS tags on top of the words. Of course, we could have also added them
below:

My dog also likes eating sausage
PRP$ NN RB VBZ VBG NN

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \& sausage \\

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

/tikz/row sep=〈length〉 (default 0cm)

Similarly to how you can increase the space between columns in a matrix, you can also increase inter-row
spacing. For example, to add 0.5ex between every two rows you can add row sep=0.5ex to the optional
argument of the deptext environment:

My dog also likes eating

PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

My dog also likes eating

PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

8

\begin{dependency}

\begin{deptext}[column sep=.7cm, row sep=.5ex]

My \& dog \& also \& likes \& eating\\

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG\\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\qquad

\end{dependency}

\quad

\begin{dependency}

\begin{deptext}[column sep=.7cm, row sep=2ex]

My \& dog \& also \& likes \& eating\\

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG\\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

4 More control over edges

In Section 2.3 I hinted to the fact that the height of the horizontal segment of a dependency edge is propor-
tional to the distance between the linked words. As you may have already guessed, this can be a problem
for . Consider the following example, in which I added some more words and a long dependency:

My dog also likes eating sausage and more words

poss

nsubj

advmod xcomp dobj

root

rather-long

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \&[.5cm] dog \& also \&[.7cm] likes \&[.4cm] eating \& sausage \& and \& more \& words \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\deproot{4}{root}

\depedge{9}{1}{rather-long}

\end{dependency}

To decide how high a dependency should be drawn, TikZ-dependency uses the formula s|x − y|, where x
and y are the offsets of the two words, and s is the value of the optional parameter /depgraph/edge unit

distance.

/depgraph/edge unit distance=〈length〉 (default 3ex)

This key represents the distance of the horizontal segment of the edge between two adjacent words. That
is, if two words are 5 positions apart, the distance of the edge will be 5 times the value of /depgraph/edge
unit distance. Whenever you draw a edge with \depedge you can override this value as part of the

9

optional argument of the command. For example, by changing its value in the previous and setting it
to 1.5ex it is possible to halve the total height of the problematic edge:

My dog also likes eating sausage and more words

poss

nsubj

advmod xcomp dobj

root
rather-long

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \&[.5cm] dog \& also \&[.7cm] likes \&[.4cm] eating \& sausage \& and \& more \& words \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\deproot{4}{root}

\depedge[edge unit distance=1.5ex]{9}{1}{rather-long}

\end{dependency}

/depgraph/edge unit distance can also be used to tune the distance of the root node from the
sentence. By default, the root node is set at a distance equal to 4 times the value of the parameter. By
changing its value you can bring it closer of further:

My dog also likes . . .

poss

nsubj

advmod

root

My dog also likes . . .

poss

nsubj

advmod

root

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \&[.5cm] dog \& also \&[.7cm] likes \&[.4cm] \dots \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\deproot[edge unit distance=4ex]{4}{root}

\end{dependency}

\quad

\begin{dependency}

\begin{deptext}[column sep=0.2cm]

My \&[.5cm] dog \& also \&[.7cm] likes \&[.4cm] \dots \\

\end{deptext}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\deproot[edge unit distance=2ex]{4}{root}

\end{dependency}

At this point, you may be wondering: why are we always drawing dependencies above the text? Indeed,
turning links around is not only possible, but also quite easy, and the next key-value pairs allow you to
control this behaviour.

/depgraph/edge above=〈boolean〉 (default true)
/depgraph/edge below=〈boolean〉 (default false)

These two keys control the position of the links, which can be drawn either above or below the layer(s)
of text. You can pass any of them as part of the optional arguments of the dependency environment,
and change the position of all the links in the graph at once. Writing the name of the key is sufficient,
so writing edge below=true or just edge below produces the same result:

10

My dog also likes eating sausage
PRP$ NN RB VBZ VBG NN

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[edge below]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \& sausage \\

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

/depgraph/edge below and /depgraph/edge above can also be used to control the positioning of
individual edges. In this case, you won’t pass the keys to the dependency environment, but instead to
a specific \depedge or \deproot whose behaviour you want to modify. Say that you wanted all the
edges to be drawn below, but the root and poss edges should be on top. You can pass /depgraph/edge
below to dependency, and /depgraph/edge above to the two \depedges to be placed above:

My dog also likes eating sausage
PRP$ NN RB VBZ VBG NN

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[edge below]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \& sausage \\

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

\end{deptext}

\deproot[edge above]{4}{root}

\depedge[edge above]{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

Other than /depgraph/edge unit distance, three more parameters can affect the way edges are drawn.
As shown in Figure1, they control several aspects related to the spacing among edges and between edges
and text, plus the inclination of the non-horizontal segments of the edge. All these properties can be set
both at the dependency level (which will affect all the edges in the graph) or at the \depedge level, which
will only affect individual links.

/depgraph/edge slant=〈length〉 (default 3pt)

/depgraph/edge slant controls the slant of the diagonal segments in a dependency edge. As shown
in Figure 1, what it actually controls is the horizontal offset between the initial (final) of the edge and
its first (second) corner. By default it is set to 3pt, which makes the segments just slightly sloped. By
setting it to 0, you can make the lateral segments completely vertical; by increasing its value you can
make the edges look less slender.

11

PRP$ NN RB VBZ VBG NN

My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

edge horizontal padding

edge slant

edge vertical padding

PRP$ NN RB VBZ VBG NN

My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

edge horizontal padding

edge slant

edge vertical padding

Figure 1: Edge-drawing parameters.

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

\begin{dependency}[edge slant=0] % edge slant=0

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

\quad

\begin{dependency}[edge slant=10pt] % edge slant=10pt

\begin{deptext}[column sep=.3cm]

My \&[.4cm] dog \& also \&[.7cm] likes \&[.5cm] eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

/depgraph/edge horizontal padding=〈length〉 (default 4pt)

TikZ-dependency employs a very simple strategy to avoid edges outgoing from and incoming into a word
to start/terminate on the same spot, thus making it easier to understand the direction of a dependency.
The algorithm is very simple: all incoming links arrive in the middle of a word; all outgoing links
heading left leave the node from a point which is a little bit to the left; all those heading right leave
from a spot a little bit to the right. /depgraph/edge horizontal padding is the value of this “little
bit”. By setting it to 0, all the edges will come and go from the same spot in the middle of the word.

12

By increasing its value, the incoming and outgoing edges on a word will look more apart.

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

\begin{dependency}[edge horizontal padding=0] % edge horizontal padding=0

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

\quad

\begin{dependency}[edge horizontal padding=10pt] % edge horizontal padding=10pt

\begin{deptext}[column sep=.7cm]

My \& dog \& also \&[.2cm] likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

/depgraph/edge vertical padding=〈length〉 (default 0ex)

/depgraph/edge vertical padding is the extra distance between a word and incoming/outgoing
edges. By increasing (decreasing) its value, you can send the edges further (bring them closer) to
the text.

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

13

\begin{dependency}[edge vertical padding=-.5ex] % edge vertical padding=-.5ex

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

\quad

\begin{dependency}[edge vertical padding=1ex] % edge horizontal padding=1ex

\begin{deptext}[column sep=.7cm]

My \& dog \& also \&[.2cm] likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

It may be worth repeating that even though you will generally want to set this properties at the dependency

level, you can very well set them individually for each edge. And of course, you can combine them with all
the properties that we saw before (e.g., /depgraph/edge below):

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

\begin{dependency}[edge vertical padding=.5ex]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \&[.3cm] likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge[edge vertical padding=0]{2}{1}{poss}

\depedge[edge below, edge vertical padding=.3cm]{4}{2}{nsubj}

\depedge[edge horizontal padding=10pt]{4}{3}{advmod}

\depedge[edge slant=0]{4}{5}{xcomp}

\end{dependency}

/depgraph/arc edge=〈boolean〉 (default false)
/depgraph/segmented edge=〈boolean〉 (default true)

This key allows you to switch between the default, fancier edge shape (/depgraph/segmented edge)
and the traditional arc-shaped edges used in dependency parsing literature. Can be used either within
dependency (affect all the edges in the graph) or individual \depedge commands. Local overrides are
also possible (as shown in the rightmost example).

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss
nsubj

advmod xcomp

14

\begin{dependency}[arc edge]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

\quad

\begin{dependency}[segmented edge]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \&[.2cm] likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge[arc edge]{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

/depgraph/arc angle=〈decimal〉 (default 60)

When using /depgraph/arc edge, this key controls the angle with which edges enter and exit the nodes.
It has no effect when the edge is drawn using /depgraph/segmented edge.

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod xcomp

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss
nsubj

advmod xcomp

\begin{dependency}[arc edge, arc angle=80]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

\quad

\begin{dependency}[arc edge, arc angle = 40]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \&[.2cm] likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

/depgraph/text only label=〈boolean〉 (default false)

At least in my opinion, heavily drawn and filled labels don’t look very well with arc edge. This flag
allows you to show only the text of the label, without drawing the node around it. To prevent the label
to be drawn just over the edge line, you may want to add either above or below to the label style,
as in this example:

15

My dog also likes eating
PRP$ NN RB VBZ VBG

root

poss

nsubj

advmod

xcomp

\begin{dependency}[arc edge, arc angle=80, text only label, label style={above}]

\begin{deptext}[column sep=.7cm]

My \& dog \& also \& likes \& eating \\

PRP\$ \& NN \& RB \& VBZ \& VBG \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge[label style={below}]{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\end{dependency}

/depgraph/edge start offset x=〈length〉 (default 0)
/depgraph/edge end offset x=〈length〉 (default 0)

When using arc edges, some edges may overlap as in the following example:

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

\begin{dependency}[theme = simple]

\begin{deptext}[column sep=1em]

A \& hearing \& is \& scheduled \& on \& the \& issue \& today \& . \\

\end{deptext}

\deproot{3}{ROOT}

\depedge{2}{1}{ATT}

\depedge{2}{5}{ATT}

\depedge{3}{2}{SBJ}

\depedge{3}{9}{PU}

\depedge{3}{4}{VC}

\depedge{4}{8}{TMP}

\depedge{5}{7}{PC}

\depedge[arc angle=50]{7}{6}{ATT}

\end{dependency}

These two keys allow you to shift the start/end point of the edge horizontally by the specified amount,
so as to untangle the graph:

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

16

\begin{dependency}[theme = simple]

\begin{deptext}[column sep=1em]

A \& hearing \& is \& scheduled \& on \& the \& issue \& today \& . \\

\end{deptext}

\deproot{3}{ROOT}

\depedge{2}{1}{ATT}

\depedge[edge start x offset=-6pt]{2}{5}{ATT}

\depedge{3}{2}{SBJ}

\depedge{3}{9}{PU}

\depedge{3}{4}{VC}

\depedge{4}{8}{TMP}

\depedge{5}{7}{PC}

\depedge[arc angle=50]{7}{6}{ATT}

\end{dependency}

5 Node groups and group linking

Another thing that you may want to do is to annotate relations between groups of nodes. I added this
functionality thinking about semantic parsing, so that it would be possible to annotate on the same graph
the syntactic and semantic layers of a sentence. You can think of many other ways of exploiting the
functionality and use it for your own specific needs. Two new commands can be used to define word groups
and to connect them.

\wordgroup[〈key-value-pairs〉]{〈row-offset〉}{〈word-offset-beg〉}{〈word-offset-end〉}{〈gid〉}
This command creates a group spanning the words in the {〈row-offset〉}-th row of the matrix from
position {〈word-offset-beg〉} to position {〈word-offset-end〉}. {〈gid〉} is a unique identifier for the group,
that will be used to connect groups. From TikZ’ point of view, it is just the name of the node enclosing
the group, so you can directly use it as you would use any other node.

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

% group on 2nd row, from word 4 to word 4, labeled "pred"

\wordgroup{2}{4}{4}{pred}

% group on 2nd row, from word 1 to word 2, labeled "a0"

\wordgroup{2}{1}{2}{a0}

% group on 2nd row, from word 5 to word 6, labeled "a1"

\wordgroup{2}{5}{6}{a1}

\end{dependency}

\groupedge[〈key-value-pairs〉]{〈from-gid〉}{〈to-gid〉}{〈label〉}{〈height〉}
This command draws an edge with label {〈label〉} from the group identified with {〈from-gid〉} to the
group identified {〈to-grid〉}. The horizontal segment of the edge will be {〈height〉} distant from the
words. Just as \depedge, also \groupedge honors the global edge positioning set via dependency.
Also in this case, you can use the keys /depgraph/edge below and /depgraph/edge above to override
the directive locally. More generally, all the key-value pairs that can be passed to \depedge (e.g.,
edge slant) can also be used with \groupedge. The two macros actually do the same thing, with

17

the difference that \depedge automatically calculates a default height for the edge based on the word-
distance between its endpoints.

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

ARG0
ARG1

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\wordgroup{2}{4}{4}{pred}

\wordgroup{2}{1}{2}{a0}

\wordgroup{2}{5}{6}{a1}

\groupedge[edge below]{pred}{a0}{ARG0}{4ex} % pred -> a0 (ARG0, 4ex)

\groupedge[edge below]{pred}{a1}{ARG1}{6ex} % pred -> a1 (ARG1, 6ex)

\end{dependency}

6 Styling text, edges and labels

This section covers the ways in which you can customize the look of the building blocks of the dependency
graph: words, groups, edges and edge labels. Styling requires some basic knowledge of TikZ styling facilities.
For those who really don’t want to read to read the glorious manual of TikZ1 (you really should, for your
own sake), in Appendix A I do my best to try to summarize a minimum of information that should be
enough to get you started.

6.1 Using themes

The simplest way to change the look and feel of your dependency graphs is to use a pre-defined theme.

/depgraph/theme=〈theme name〉 (default default)

By passing this option to dependency, you can completely change the appearence of the graphs. At
the moment of writing, the following five themes have been defined: default, simple, night, brazil,
grassy, iron, copper. They look like this:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

1http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

18

http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

\begin{dependency}[theme=default]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod
xcomp dobj

\begin{dependency}[theme=simple]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[theme=night]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

19

\begin{dependency}[theme=brazil]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[theme=grassy]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[theme=iron]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

20

\begin{dependency}[theme=copper]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

/depgraph/edge theme=〈theme name〉 (default default)
/depgraph/label theme=〈theme name〉 (default default)
/depgraph/text theme=〈theme name〉 (default default)

Each of the aforementioned themes is actually a combination of three themes with the same name: one
for edges, one for edge labels and one for the sentence text. These three themes can also be applied
independently. So, for example, you could apply the iron theme globally and then use copper to draw
the labels:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[theme=iron, label theme=copper]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

Edges and labels can be styled locally, by passing the desired theme, label theme or edge theme to specific
edges. In the following example, I will use iron as the base theme, globally overriding the label theme

with copper and using grassy as the theme and label theme two special edges:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[theme=iron, label theme=copper]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge[theme=grassy]{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge[label theme=grassy]{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

21

6.2 Styling elements individually

/depgraph/hide label=〈boolean〉 (default false)
/depgraph/show label=〈boolean〉 (default true)

By default, all labels are visible. Add hide label to the [〈key-value-pairs〉] of \depedge or \groupedge
to prevent the bounding box and the text of the label to be drawn.

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge[hide label]{5}{6}{dobj}

\end{dependency}

If added to the options of dependency, all the labels will be suppressed. Local overriding is still possible
by adding the /depgraph/show label key:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[hide label]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge[show label]{5}{6}{dobj}

\end{dependency}

Please, note that the labels are still there, only they are transparent.

/depgraph/edge style=〈style〉 (style, default {})
This style is applied to all the edges drawn by TikZ-dependency. By setting its value you can alter the
appearance of the dependency edges. The default style applied to every edge is:

\pgfkeys{%

/depgraph/reserved/edge style/.style = {%

->, >=stealth, % arrow properties

black, solid, line cap=round, % line properties

rounded corners=2, % make corners round

},%

}

By setting edge style at the dependency level, all the edges in the graph are affected:

22

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[edge style={red,densely dotted}]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

As always, local settings at the edge level take precedence over global settings:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[edge style={green!60!black,very thick}]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge[edge style={blue!60!black,ultra thick}]{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

/depgraph/label style=〈style〉 (style, default {})
The default style applied to every label is the following:

\pgfkeys{%

/depgraph/reserved/label style/.style = {%

draw, solid, black, % the outline of the label

scale=.7, % scale down the text, to make it smaller than the sentence text

text=black, % color of the text

text height=1.5ex, % needed to center text vertically

text depth=0.25ex, % needed to center text vertically

inner sep=.5ex, % padding between the text and the border of the node

fill=white, % background color

outer sep=0pt,

rounded corners=2pt,

anchor=mid,

},%

}

The look of labels can be changed by defining the label style style, either locally to each edge or
globally:

23

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[edge style={green!60!black,very thick},

label style={fill=yellow!60,font=\bfseries,thick}]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge[edge style={blue!60!black,ultra thick},

label style={fill=green!60,font=\bfseries,text=black}]{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

/depgraph/group style=〈style〉 (style, default {})
By default, when you create a group you will only see a box with rounded corners around the selected
words:

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\wordgroup{2}{1}{2}{a0}

\wordgroup{2}{5}{6}{a1}

\end{dependency}

The group style property allows you to redefine this style according to your taste and needs:

PRP$ NN RB VBZ VBG NN

My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

24

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.5ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\wordgroup[group style={fill=orange!40, draw=brown, inner sep=.6ex}]{2}{1}{2}{a0}

\end{dependency}

Please, keep in mind that a group is just a box drawn underneath the word nodes. They have no text
themselves, as the text that they surround is actually the text of some word node. Therefore, you
cannot use group style to change in any way the rendering of the words they group.

/tikz/nodes=〈style〉 (style, default {})
This is an TikZ style key used to render the nodes within a given scope. By using it within a deptext,
you can assign a style to all the nodes in the matrix, i.e. the words in the sentence:

PRP$ NN RB VBZ VBG NN

My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\begin{dependency}[edge style={green!60!black,very thick},

label style={fill=blue!60,font=\bfseries,text=white}]

\begin{deptext}[column sep=.5cm, row sep=.1ex,

nodes={draw=red!80!black, shade, top color=red!60, rounded corners}]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge[edge style={blue!60!black,ultra thick},

label style={fill=green!60,font=\bfseries,text=black}]{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

The style can be overridden on a per-node basis, by using a special syntax understood by matrix that
allows to set style properties of each node individually. To to so, you need to add |[<style>]| before
every word that you want to restyle, where 〈style〉 is a style definition. The following example shows
how you would apply a different style to all the nodes in the second row:

PRP$ NN RB VBZ VBG NN

M
y

do
g

al
so

lik
es

ea
tin

g

sa
us

ag
e

root

po
ss

nsubj

advmod xcomp dobj

25

\begin{dependency}[edge style={green!60!black,very thick},

label style={fill=blue!60,font=\bfseries,text=white}]

\tikzstyle{POS}=[font=\footnotesize\bfseries,text=blue!60!black]

\tikzstyle{word}=[draw=blue!60!black, shade, text=black,

rotate=45, anchor=north east, inner sep=1ex,

font=\normalsize, top color=blue!60, rounded corners]

\begin{deptext}[column sep=.5cm, row sep=0, nodes={POS}]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

|[word]| My \& |[word]| dog \& |[word]| also \&

|[word]| likes \& |[word]| eating \& |[word]| sausage \\

\end{deptext}

\deproot{4}{root}

\depedge[edge style={blue!60!black,ultra thick},

label style={fill=green!60,font=\bfseries,text=black, rotate=10}]{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\end{dependency}

When using this syntax, you should always consider that the nodes style is in any case applied to every
node in the matrix, then the style specified for each node (if any) is appended. This fact has the subtle
implication that all the nodes inherit all the properties set via nodes, and per-node styles must explicitly
overwrite all the properties that they don’t need to use. As a rule of thumb, you should use nodes to
set properties that all the nodes will share, and then use per-node options to add or override options.

6.3 Defining your own styles

\depstyle{〈style-name〉}{〈style-definition〉}
Defining your own styles is a convenient way of using a consistent look for all your graphs across a
document, at the same time avoiding a lot of unnecessary typing. \depstyle is a wrapper around
\tikzset (see Section A) with the advantage that you do not have to prepend /depgraph to all the
styling keys that are defined by TikZ-dependency. \depstyle automatically forwards to TikZ all the
keys that it does not how to handle.

In the following example I will define and use two styles. The first style results in thick blue edges,
labels with a thick red outline, blue text and white background; the second style also uses a predefined
themes.

PRP$ NN RB VBZ VBG NN

My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

\depstyle{red and blue}{edge style = {thick, blue},

label style = {thick, draw=red, text=blue, fill=white}}

\depstyle{collage}{edge theme = grassy, label style={draw=orange,trapezium}}

\begin{dependency}[red and blue]

\begin{deptext}[column sep=.5cm, row sep=.5ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \&[.2cm] VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge[collage]{4}{5}{xcomp}

\depedge[collage]{5}{6}{dobj}

\end{dependency}

Note how the labels in the style collage inherit the background and the text color of red and blue

labels. This happens because the red and blue style is applied at the dependency level, meaning that
it is applied to all the labels. Then, the collage style is applied to the labels of the last two edges.

26

Since this style only overrides the color of the outline (draw), all the other properties are inherited from
red and blue.

7 Interaction with TikZ

Some function make it possible to reference the nodes in the graph so that it is easier to extend the graph
with TikZ drawing capabilities. Understanding what is going on here requires at least some basic knowledge
of how to draw nodes and paths in TikZ.

\matrixref

Returns a reference to the \matrix used to lay out the sentence. You can use it to position other
elements in the picture relative to it.

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

south

north

eastwest

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\foreach \a/\pos in {south/below of,north/above of,east/right of,west/left of} {

\node (tmp) at (\matrixref.\a) [draw, circle, fill=red, inner sep=1pt] {};

\node (tmp2) [\pos = tmp] {\a} -- (tmp);

\draw [->] (tmp2) -- (tmp);

};

\end{dependency}

\wordref{〈row-offset〉}{〈word-offset〉}
Returns the reference to the matrix node in row {〈row-offset〉} and column {〈word-offset〉}.

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj Top right

Bottom left

27

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\node (silly1) [above right of = \wordref{1}{6}, xshift = 2cm] {Top right};

\node (silly2) [below left of = \wordref{2}{1}, xshift = -2cm] {Bottom left};

\draw [->, very thick, red] (silly1) -- (\wordref{1}{6});

\draw [->, very thick, red] (silly2) -- (\wordref{2}{1});

\end{dependency}

\rootref

Returns a reference to the node holding the root label.

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

This is the root node!

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\node (silly) [above right of = \rootref, xshift = 3cm] {This is the root node!};

\draw [->, very thick, red] (silly) -- (\rootref);

\draw [thick, blue] (\rootref)--(\wordref{1}{2})--(\wordref{2}{6})--(\rootref);

\end{dependency}

\storelabelnode{〈macro〉}
\storefirstcorner{〈macro〉}
\storesecondcorner{〈macro〉}

After adding a new edge with \depedge or \groupedge, three commands allow you to store the name of
the nodes used to draw the label end the corners of the dependency edge. \storelabelnode can be used
to store the name of the label in the macro 〈macro〉. You can then use 〈macro〉 just as you would use
any node, to draw something involving the label node. \storefirstcorner and \storesecondcorner

work exactly in the same way, but they hold they point to the nodes holding the coordinates of the edge
corners.

28

PRP$ NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

labels! edge corners!

\begin{dependency}

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \& VBG \& NN \\

My \& dog \& also \& likes \& eating \& sausage \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\storelabelnode\firstlab

\storefirstcorner\firstcorner

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\depedge{4}{5}{xcomp}

\depedge{5}{6}{dobj}

\storelabelnode\secondlab

\storesecondcorner\secondcorner

\draw [<->,out=90,in=-90, thick, red] (\firstlab) to

node [fill=red, text=white, font=\bfseries, above, near start, sloped]

{labels!} (\secondlab);

\draw [<->, out=-90,in=90, thick, blue!60] (\firstcorner) to

node [fill=blue!60, text=white, font=\bfseries, above, near end, sloped]

{edge corners!} (\secondcorner);

\end{dependency}

8 Answers to frequent or interesting questions

This section shows practical examples of how to achieve specific results with TikZ-dependency that may
not seem that obvious.

8.1 How do I change the shape of label nodes?

By default, TikZ-dependency uses TikZ’s rounded corners shape to draw the labels, but you can use every
shape that you want. By default, TikZ defines the rectangle, rounded corners and circle shapes. More
shapes are available via the shapes library, which TikZ-dependency already loads for you. As always, for
more information you can refer to TikZ manual.

To change the shape of labels, you simply add the shape name to, edge style, as in the following examples:

PRP$ NN RB VBZ
My dog also likes . . .

root

poss

nsubj

advmod

PRP$ NN RB VBZ
My dog also likes . . .

root

poss

nsubj

advmod

29

\begin{dependency}[label style = {circle}]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \\

My \& dog \& also \& likes \& \dots \\

\end{deptext}

\deproot{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\end{dependency}

\qquad

\begin{dependency}[label style = {trapezium}]

\begin{deptext}[column sep=.5cm, row sep=.1ex]

PRP\$ \& NN \& RB \&[.5cm] VBZ \\

My \& dog \& also \& likes \& \dots \\

\end{deptext}

\deproot[label style = {star}]{4}{root}

\depedge{2}{1}{poss}

\depedge{4}{2}{nsubj}

\depedge{4}{3}{advmod}

\end{dependency}

8.2 How do I draw bubble parses?

Until a user of TikZ-dependency asked me how to draw them, I was not even aware that these things
existed. Anyway, it turns out that is quite simple to draw bubble parses with TikZ-dependency, and that
\wordgroup is basically all you need.

Until I or someone else writes some facilities to explicitly support these beauties, you will have to take care
of the details explicitly. What you have to do is:

• use \wordgroup to create bubbles;

• use inner sep and minimum height with group style to create bubbles of the desired size;

• increase the values of inner sep and minimum height for more external bubbles;

• use \groupedge to create edges between bubbles.

The follow example should give you a good starting point:

a student whose mother and his father peter knows

ungrammatical

30

\depstyle{inner bubble}{draw=gray!80, minimum height=20pt, rounded corners=8pt,

inner sep=2pt, top color=gray!40, bottom color=white}

\depstyle{outer bubble}{draw=gray!80, minimum height=26pt, rounded corners=10pt,

inner sep=5pt, top color=white, bottom color=gray!40}

\depstyle{ungrammatical}{edge below, edge style = {ultra thick, red},

label style = {below, text=red}, text only label}

\begin{dependency}[hide label, arc edge,

edge vertical padding=-2pt,

group style=outer bubble]

\begin{deptext}[column sep=1.4em]

a \& student \& whose \& mother \& and \& his \& father \& peter \& knows \\

\end{deptext}

\wordgroup{1}{3}{7}{chubby}

\wordgroup{1}{1}{2}{first} \depedge{2}{1}{}

\wordgroup[inner bubble]{1}{3}{4}{second} \depedge{4}{3}{}

\wordgroup[inner bubble]{1}{6}{7}{third} \depedge{7}{6}{}

\wordgroup{1}{8}{8}{fourth}

\wordgroup{1}{9}{9}{fifth}

\groupedge{fifth}{fourth}{}{0}

\groupedge[ungrammatical]{first}{second}{ungrammatical}{.5cm}

\groupedge[edge above]{second}{fifth}{}{1.5cm}

\groupedge[edge above]{fifth}{chubby}{}{1cm}

\end{dependency}%

When using fill or shade with \wordgroup, as in the example, be aware of the fact that the nodes are
drawn in the order that you write them down. For this reason, larger bubbles should always be drawn first,
and the contained bubbles afterwards. Otherwise, the inner bubbles will be covered by the outer one.

A TikZ crash course

Disclaimer. I am making a lot of rough simplifications here to make it possible to explain everything in as
little space as possible. Really invite to read the full version of the manual, if you haven’t already. It is the
only way to really appreciate the elegance and beauty of this TikZ and its incredible potential.

PGF/TikZ is a set of lower/higher level macros that allow you to draw extremely refined and sophisticated
graphics directly in LATEX. If you don’t know anything about it, then you are really missing on something,
and you should run and check the manual2. I am repeating myself, but you really should.

A.1 \pgfkeys and \tikzset

TikZ is basically built on top of pgfkeys, which is a very flexible and sophisticated system to store key-
value pairs. TikZ (and derived packages), such as TikZ-dependency, use this system for setting local or
global variables, and to pass optional arguments to commands (macros) that can take a large number of
configuration option.

The definition of virtually all TikZ macros follows the template:

\somecommand [〈key-value-pairs〉]{〈first〉}. . . {〈last〉}
The first argument, optional, is a set of key-value pairs that can be used to set a bunch of options. It is
thus possible to reduce to a minimum the number of mandatory arguments {〈first〉}. . . {〈last〉}, and keep
macro’s interface lighter and simpler to use. All commands, first parse the key-value pairs, then do what
they have to do based on the updated state of the variables.

Key names and values can contain spaces, values can be assigned via the = sign and commas can be used to
separate assignments. Braces can be used for grouping values. So, for example, the assignment variable

one = \{a, b\}, vartwo = c would result in a, b being assigned to variable one and c to vartwo.

The function which is responsible for parsing key-value pairs is \pgfkeys:

2http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

31

http://ftp.gui.uva.es/sites/ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

\pgfkeys{〈keys〉}
The \pgfkeys command parses a string containing a sequence of keys and stores their value, e.g.:

\pgfkeys{a=1, b=2, c={d=3,e=4}}

In this case, the value of the key a is set to a and b to 2. c contains two keys, d and e, whose values are
3 and 4, respectively. How this values can be accessed is of no interest for the scope of this document.
We only want to be able to set those keys. Please, note that you can only set the values for keys that
already exist. How a key can be created is also of no interest for us, as we only want to be able to
change the values of existing keys.

Keys can be arranged hierarchically, as in a directory structure. This property allows every sub-package to
define its own protected space of keys, making it less likely to cause interaction problems. All TikZ keys are
stored under the root key /tikz/. So, for example, /tikz/fill=blue assigns the value blue to the fill

key within the namespace /tikz/. TikZ-dependency defines its own namespace, which is /depgraph/, and
defines its own subset of keys that interact with TikZ’ own.

As a convenience function, TikZ also defines the following macro:

\tikzset{〈keys〉}
\tikzset is just a wrapper around \pgfkeys, that prefixes all keys with /tikz/. The two following
instructions are (for us) equivalent:

\pgfkeys{/tikz/text=red, /tikz/fill=white}

\tikzset{text=red, fill=white}

Some keys only have a name and no value. Without going into details, it won’t hurt to know that such keys
are either binary flags or one of a set of alternative options (choice keys), so that activating one automatically
deactivates the other alternatives in the set.

Conveniently, \pgfkeys also define an inheritance mechanism that allows sub-packages to consume the keys
that they can understand, and then pass on to TikZ all the keys that haven’t been handled. This fact also
makes it possible for a user to specify a key without using its fully qualified name. When introducing a key
for the first time, I will always use its fully qualified name, just to make it clear where it belongs. In the
examples, though, I will generally prefer to use a more compact notation and only use the “base name” of
the keys.

A.2 Basic styling notions

A style is a set of key-value pairs (we have seen many already in the previous pages) that define the properties
of some graphical object. As an example, {draw=red, thick} is a style (we will soon come to the meaning
of these properties).

The simplest way to define a new style is with the \tikzstyle command:

\tikzstyle{〈name〉}=[〈key-value-pairs〉]
Here, {〈name〉} is just an identifier for your style (such as my style, or very cool, whatever).
[〈key-value-pairs〉] is a sequence of comma separated key-value pairs, e.g.:

\tikzstyle{my cool style} = [draw=black, fill=red]

Once a style is defined, you can “add” things to the style in at least two ways:

• By using the same syntax as before, but adding a + between {〈name〉} and the = sign, e.g.,:

% before: my cool style = {draw=black, fill=red}

\tikzstyle{my cool style} += [thick]

% after: my cool style = {draw=black, fill=red, thick}

32

• By setting (via \tikzset) the special sub-property .append style of an already existent style,
e.g.:

% before: my cool style = {draw=black, fill=red, thick}

\tikzset{my cool style/.append style = {dotted}}

% after: my cool style = {draw=black, fill=red, thick, dotted}

A dependency graph is built using two TikZ primitives: nodes and paths. Dependency edges are paths. Edge
labels and words in the sentence are nodes containing text. Word groups are also nodes, which are drawn
on the layer underneath the word nodes. They have no text themselves, as the text that they surround is
actually the text of some word node.

Nodes have an outline (i.e., a contour) and an area (the space inside the contour), and (generally) contain
some text. All these properties can be styled independently, and the styling can be done either globally (in
a way that affects all the graphics within a given scope) or locally (i.e., for each node individually). The
same applies to paths, even though in this case you only have the outline to play with.

Let’s briefly dive through the most relevant key-value pairs that can be used to configure these properties.
My purpose here is just to provide a compact reference to understand the examples in the documentation.

A.2.1 Outline properties

These describe the properties of lines. They apply to edges and to the contour of nodes (such as labels and
words in the sentence)

/tikz/draw (no value)

This key tells tikz to actually draw the outline of a shape. If draw is not set, then the outline is not
drawn. By default, outlines are not drawn.

/tikz/circle (no value)
/tikz/ellipse (no value)
/tikz/rectangle (no value)

Selecting one of this properties allows you to use a different shape to draw a node. When draw is
selected, by default the node will be drawn as a rectangle.

/tikz/rounded corners=〈length〉 (no default)

This property allows you to make corners round. The value that you assign to it is the amount of
roundness.

/tikz/very thin (no value)
/tikz/thin (no value)
/tikz/thick (no value)
/tikz/very thick (no value)

Can be used to set the width of a line. thin is the default value (corresponding to 0.4pt).

/tikz/color=〈color-spec〉 (no default)

Sets the color used to draw the line. 〈color-spec〉 can be a color name, such as red, green or blue, or a
more complicated expression, such as red!60!black, which means “make a new color made of red for
60% of red, of black for the rest”. Colors can be specified in many other ways, which we won’t cover
here.

/tikz/solid (no value)
/tikz/dotted (no value)
/tikz/loosely dotted (no value)
/tikz/densely dotted (no value)
/tikz/dashed (no value)
/tikz/loosely dashed (no value)
/tikz/densely dashed (no value)

Set the kind of line to be used to draw the outline. solid is the default (i.e. a continuous line).

33

A.2.2 Area properties

These describe the properties of areas. They apply to the background of nodes (such as labels, words in the
sentence and word groups).

/tikz/fill=〈color〉 (no default)

This key tells tikz to fill the inside of a shape (or a node) with a solid color. Color specification is the
same as for /tikz/draw.

/tikz/shade (no value)

Instead of filling the area with a solid color, fill it with a gradient.

/tikz/top color=〈color〉 (no default)
/tikz/bottom color=〈color〉 (no default)

If shade is set, you can use these two keys to set up a vertical gradient.

/tikz/left color=〈color〉 (no default)
/tikz/right color=〈color〉 (no default)

If shade is set, you can use these two keys to set up a horizontal gradient.

/tikz/inner sep=〈length〉 (no default)

This parameter controls the distance between the outline of a node and its contents (e.g., the text inside
the node).

/tikz/minimum height=〈length〉 (no default)
/tikz/minimum width=〈length〉 (no default)

By default, the size of a node is determined based on its content, i.e., it is just as big as to fit what’s
inside (plus padding and spacing, e.g., inner sep). By setting these keys, you can force a node to be
at least as tall and/or wide as requested.

A.2.3 Text properties

These describe the properties of text boxes. They apply to the text of the sentence (the rows if the matrix

wrapped by deptext) and to labels.

/tikz/text=〈color〉 (no default)

This key sets the color to be used to render the text.

/tikz/font=〈fontmacros〉 (no default)

Set the font size/family/series/shape to be user to render the text. Every combination of these standard
LATEX macros is a valid value for 〈fontmacros〉: \normalsize, \small, \footnotesize, \tiny, \large,
\huge, \rmfamily, \ttfamily, \sffamily, \mdseries, \bfseries, \upshape, \itshape, \scshape,
\slshape.

34

Index

\&, 4
\\, 4

arc angle key, 15
arc edge key, 14
area, 33

bottom color key, 34

circle key, 33
color key, 33
column sep key, 6

dashed key, 33
densely dashed key, 33
densely dotted key, 33
\depedge, 5
dependency environment, 4
/depgraph/

arc angle, 15
arc edge, 14
edge above, 10
edge below, 10
edge end offset x, 16
edge horizontal padding, 12
edge slant, 11
edge start offset x, 16
edge style, 22
edge theme, 21
edge unit distance, 9
edge vertical padding, 13
group style, 24
hide label, 22
label style, 23
label theme, 21
segmented edge, 14
show label, 22
text only label, 15
text theme, 21
theme, 18

\deproot, 7
\depstyle, 26
deptext environment, 4
dotted key, 33
draw key, 33

edge above key, 10
edge below key, 10
edge end offset x key, 16
edge horizontal padding key, 12
edge slant key, 11
edge start offset x key, 16
edge style key, 22
edge theme key, 21
edge unit distance key, 9
edge vertical padding key, 13
ellipse key, 33
Environments

dependency, 4
deptext, 4

fill key, 34
font key, 34

group style key, 24
\groupedge, 17

hide label key, 22

inner sep key, 34

key
binary, 32
choice, 32
key-value pairs, 31
without a value, 32

label style key, 23
label theme key, 21
left color key, 34
line separator, 4
long dependencies, 9
loosely dashed key, 33
loosely dotted key, 33

\matrixref, 27
minimum height key, 34
minimum width key, 34

node, 33
nodes key, 25

outline, 33

path, 33
\pgfkeys, 32

rectangle key, 33
right color key, 34
root node, 7

distance, 10
\rootref, 28
rounded corners key, 33
row sep key, 8

segmented edge key, 14
shade key, 34
show label key, 22
solid key, 33
\storefirstcorner, 28
\storelabelnode, 28
\storesecondcorner, 28
style

define new, 32
update definition, 32

terminology
dependency, 4
edge, 4
label, 4
word, 4

text key, 34
text only label key, 15

35

text theme key, 21
theme key, 18
themes, 18
theming, 18
thick key, 33
thin key, 33
/tikz/

bottom color, 34
circle, 33
color, 33
column sep, 6
dashed, 33
densely dashed, 33
densely dotted, 33
dotted, 33
draw, 33
ellipse, 33
fill, 34
font, 34
inner sep, 34
left color, 34
loosely dashed, 33
loosely dotted, 33
minimum height, 34
minimum width, 34
nodes, 25
rectangle, 33
right color, 34
rounded corners, 33
row sep, 8
shade, 34
solid, 33
text, 34
thick, 33
thin, 33
top color, 34
very thick, 33
very thin, 33

\tikzset, 32
\tikzstyle, 32
top color key, 34

very thick key, 33
very thin key, 33

word separator, 4
\wordgroup, 17
\wordref, 27

36

	Installation
	A step-by-step introduction
	An environment to draw dependency graphs
	Writing the sentence
	Adding dependencies
	Getting word spacing right
	Setting the space between every two words
	Spacing word individually

	Adding a root node

	Multiple layers of text
	More control over edges
	Node groups and group linking
	Styling text, edges and labels
	Using themes
	Styling elements individually
	Defining your own styles

	Interaction with TikZ
	Answers to frequent or interesting questions
	How do I change the shape of label nodes?
	How do I draw bubble parses?

	TikZ crash course
	\pgfkeys and \tikzset
	Basic styling notions
	Outline properties
	Area properties
	Text properties

	Index

