
Lollipop Unwrapped

http://lollipop-project.sourceforge.net

Victor Eijkhout (Original author)

Vafa Khalighi (Current developer)

A manual for the Lollipop TEX format,

last updated 19 April 2014

Pages: ix+50=59.

1 Contents

Chapter 1

Contents

1.1 Regular sections

1 Contents ii
1.1 Regular sections ii
1.2 All of the options iii
1.3 All of the commands iv
1.4 Bibliography iv

2 Preliminaries v
2.1 What is Lollipop? v
2.2 But is it compatible? v
2.3 How to Use Lollipop vi
2.4 Processing a Lollipop file vi
2.5 The errors of Lollipop/ known bugs vi
2.6 About this manual vii
2.7 The most boring section in this manual viii

3 The structure of Lollipop 1
3.1 Lollipop Files 1
3.2 Generic Constructs 1
3.3 Options 1
3.4 Popular error messages. Not! 2

4 Headings 3
4.1 Examples 3

5 Lists 5
5.1 Label alignment 5
5.2 List indentation 5
5.3 Label style 6
5.4 Label width 6
5.5 Description lists 6
5.6 Suspended lists 7
5.7 Item counter manipulation 7
5.8 List titles and list tails 7
5.9 Between the items 8
5.10 Indentation in lists 8

6 Text Blocks 9
6.1 The text option 9
6.2 More examples 10

7 Output 11
7.1 Page dimensions 11
7.2 Positioning the page on the paper 12
7.3 Page head, foot, text 12
7.4 The page number 14
7.5 Page tests 14
7.6 Running heads / footers 15
7.7 Alternating page grids 16
7.8 Additional User Control 17

8 Referencing 19
8.1 What and how do you reference? 19ii

All of the options 1.2

8.2 The shape of the reference 20
8.3 Local references 21
8.4 Bibliography citations 22
8.5 Obscure details 23

9 External Files 24
9.1 Declaring and loading an external file 24
9.2 Generating external files 24
9.3 Formatting an external file 25
9.4 Example 25

10 Options 26
10.1 Titles 26
10.2 Counters 26
10.3 Chunks of text 27
10.4 Labels 30
10.5 Break before / after 30
10.6 Indentation 30
10.7 Rules 30
10.8 Embedded constructs 31
10.9 Obscure options 31
10.10 Testing 32

11 Commands 33
11.1 Counters 33
11.2 Font selection 35
11.3 Baselineskip 37
11.4 Indentation Control 37
11.5 Margins 39
11.6 White Space 39
11.7 Distances 39
11.8 Input Files 40
11.9 Tests 41
11.10 Goodies 41

12 Tracing 43
12.1 Do you really want to see this? 43

13 Example styles 44
13.1 The style definition for this book 44
13.2 Address book 47

1.2 All of the options

(You know, this section and the next look much better if you sort the manual.oix and
manual.cix files before you format the document the last time. Do put lines

\Writeopindex:no

\Writecsindex:no

somewhere in the top of the manual.tex file in order to prevent overwriting of these files after
you’ve sorted them.)
title 3 indentafter 3 item 5 indentation 5 itemsign 6 itemCounter 6
labeloverflow 6 description 6 text 7 breakbetween 8 whitebetween 8
indentinside 8 text 9 height 11 text 12 textband 12 band 12
pagerule 14 topskip 14 PageCounter 14 NextPageGrid 16 label 20
haslabel 23 external 24 file 25 item 25 FooLabel 25 title 26
HasTitle 26 counter 27 HasCounter 27 block 27 stickout 28
line 29 textcolumn 29 label 30 breakbefore 30 breakafter 30 iii

1 Contents

indentafter 30 indentinside 30 indentfirst 30 hrule 30 embedded 31
noimplicitclose 32

1.3 All of the commands

\StartCommand 1 \OptionsMacro 2 \DefineHeading 3 \DefineList 5
\SetItemSign 6 \SetItemCounterRepresentation 6 \PopIndentLevel 7
\DefineTextBlock 9 \DefinePageGrid 11 \Height 11 \PageCounter 14
\FirstPlaced 15 \LastPlaced 15 \PreviousPlaced 15 \EjectPage 17
\ToRecto 17 \ToVerso 17 \NoPages 18 \PagesOut 18 \WholePage 18
\CurrentShipout 18 \CountSheetsno 18 \SuspendOutput 18 \ResumeOutput 18
\ref 19 \pgref 19 \label 19 \LocalReferences 22 \DefineBBL 23
\bibref 23 \RefLabel 23 \DefineExternalFile 24 \WriteFoo 24
\WriteExtern 24 \LoadExternalFile 24 \ToExternalFile 25
\DefineExternalItem 25 \FooLabel 25 \FooTitle 26 \BlockWidth 28 \arg 31
\> 32 \>] 32 \FooCounter 33 \CounterRepresentation 33 \NewCounter 33
\StartCounter 33 \StepCounter 33 \BackStepCounter 33 \SetCounter 33
\AddToCounter 34 \GoverningCounter 34 \NewCounter 34 \label 34
\AdaptiveCounter 34 \Typeface 35 \Style 35 \PointSize 35 \SetFont 35
\PointSizeLarger 35 \PointSizeSmaller 35 \script 36 \scriptscript 36
\normal 36 \DefineTypeface 36 \SaveFont 37 \RestoreFont 37 \tt 37
\AlwaysIndent 37 \Indent 37 \basicindent 37 \BasicIndentIsSet 37
\LevelIndent 38 \levelindentii 38 \PushIndentLevel 38 \PopIndentLevel 38
\FlushRight 39 \FlushLeft 39 \rightmarginstretch 39 \leftmarginstretch 39
\hwhite 39 \vwhite 39 \white 39 \fillup 39 \Distance 39
\AdaptiveDistance 40 \InputFile 40 \NewList 41 \EmptyList 41
\TheList 41 \AppendToList 41 \UndefinedCS 41 \EqualString 41
\EqualStringX 41 \StringBefore 41 \NextChar 41 \IsEmptyList 41 \loop 42
\EveryParagraph 42 \EveryMath 42 \EveryDisplay 42 \SaveAlloc 42
\RestoreAlloc 42

1.4 Bibliography

[-1-] Victor Eijkhout. TEX by topic. http://eijkhout.net/texbytopic/texbytopic.html,
1992.

[-2-] Victor Eijkhout. Just give me a lollipop (it makes my heart go giddy-up). TUGboat,
13:341–346, 1992.

[-3-] Victor Eijkhout and Andries Lenstra. The document style designer as a separate
entity. TUGboat, 12:31–34, 1991.

[-4-] Donald E. Knuth. The TEX Book. Addison-Wesley, 1984, reprinted with corrections
1989.

[-5-] Leslie Lamport. LATEX A Document Preparation System. Addison-Wesley, 1986.
[-6-] Alan Perlis. Epigrams on programming. ACM Sigplan Notices, 17:7–13, 1982.
[-7-] Raymond Seroul and Silvio Levy. A Beginner’s Book of TEX. Springer Verlag, 1990.

iv

But is it compatible? 2.2

Chapter 2

Preliminaries

2.1 What is Lollipop?

Lollipop is ‘TEX made easy’. Lollipop is a macro package that functions as a toolbox for writing
TEX macros. It was my intention to make macro writing so easy that implementing a fully new
layout in TEX would become a matter of less than an hour for an average document, and that it
would be a task that could be accomplished by someone with only a very basic training in TEX
programming.

Lollipop is an attempt to make structured text formatting available for environments
where previously only wysiwyg packages could be used because adapting the layout is so much
more easy with them than with traditional TEX macro packages.

2.2 But is it compatible?

Lollipop, like LATEX, is not compatible with plain TEX. I don’t consider this a real problem. Most
plain TEX commands will work in Lollipop with the exception of anything output routine related.
(See also below.)

Lollipop is also not compatible with LATEX, although it has a lot of the same
functionality. There are two reasons why Lollipop still has a reason for existing, even though
LATEX is used pretty much all over the scientific world.

For one, Lollipop is targeted in part to different users than the typical plain TEX or
LATEX user. For another, I have a vain hope that I can capture some of the LATEX market share.
Since developing styles in Lollipop is so much more easier than in LATEX, I may stand a fighting
chance.

2.2.1 Lollipop and plain TEX

Having said the above, I’ll conceded that Lollipop is more compatible with plain TEX than with
LATEX. You can use quite some plain TEX commands in Lollipop. However, stay away from the
following:

\everypar This one is heavily used by Lollipop. You may use \EveryParagraph instead, which
functions pretty much like \everypar; see section 11.10.3.

\everymath This one is heavily used by Lollipop. You may use \EveryMath instead, which
functions pretty much like \everymath; see section 11.10.4.

\everydisplay This one is heavily used by Lollipop. You may use \EveryDisplay instead,
which functions pretty much like \everydisplay; see section 11.10.5.

\output Page output is done so very differently from plain TEX that all commands pertaining
to page numbers and head/footlines have been eradicated. (Well, \pageno still gives the
page number.) See chapter 7.

The current version of Lollipop is based on the plain TEX file that comes with TEX
version 3.141592653.

2.2.2 Lollipop and TEX programming

The tools in Lollipop allow you to program in a simple manner quite complicated macros. Still
you may want to have some knowledge of ordinary TEX macro programming. If you are just v

2 Preliminaries

starting in TEX you can pick up the basics from the book by Seroul and Levy [7], and after that
there is the book by the original author of TEX [4] and my own TEX reference guide [1].

2.3 How to Use Lollipop

The following files comprise the Lollipop format:
lollipop-define.tex lollipop-document.tex

lollipop-float.tex lollipop-fontdefs.tex

lollipop-fonts.tex lollipop-heading.tex

lollipop-lists.tex lollipop-output.tex

lollipop-plain.tex lollipop-text.tex

lollipop-tools.tex lollipop.tex

Lollipop comes in the following five formats:

• lollipop uses PdfTEX engine and produces pdf output.
• dvilollipop uses PdfTEX engine and produces dvi output.
• lualollipop uses LuaTEX engine and produces pdf output.
• dvilualollipop uses LuaTEX engine and produces dvi output.
• xelollipop uses XeTEX engine and produces pdf output.

To process a file, say test.tex, with Lollipop you then type:
> lollipop test.tex

or
> dvilollipop test.tex

or
> lualollipop test.tex

or
> dvilualollipop test.tex

or
> xelollipop test.tex

depending on which of the five formats you want to use.

2.4 Processing a Lollipop file

Files that you make to be processed with Lollipop contain of course the input text, but they also
have to contain the design macros that determine the layout. There are two possibilities for these
design macros:

• You can simply put them in the same file, either in the beginning or wherever they are
first needed, or

• You can put the layout definition in a separate file and call this definition file in
your main file. For instance, you can put the layout definition of a book in a file
bookstyle.tex, and then call this definition file in your main Lollipop file by putting
\InputLollipop:bookstyle.tex

somewhere in your main Lollipop file.
If you have used TEX before, you will notice that the page numbers get reported

slightly differently from the usual way. See section 7.4 for the explanation.

2.5 The errors of Lollipop/ known bugs

Since Lollipop is an order of magnitude more powerful (and hence complicated) than
formats such as LATEX, its error messages can also be an order of magnitude morevi

About this manual 2.6

cryptic (see section 3.4 for the possible origin of some of the more obscure error
messages).

Fortunately, Lollipop is also quite a bit better than existing formats at catching
potential errors. Typos in a style definition will usually lead to warning messages, and
also during run time Lollipop is able to track down ommisions.

In addition, you can switch on various trace modes to get more detailed
information about Lollipop’s thought processes. See chapter 12.

These are the known bugs in Lollipop at the moment.

1 Local references have been insufficiently tested, and the code definitely is buggy.
2 The ‘firstpage’ test in the page grids does not work.
3 The table of contents example is slightly wrong.
4 Titles get written to the aux file with double spaces. This shouldn’t cause any

problem, but it has to be fixed.
5 Rules in page grids get white space around them.
6 External items shouldn’t declare \FooTitle or \FooCounter.
7 \ToExternalFile doesn’t work.

There are also other known bugs on the sourceforge tickets of Lollipop:
http://sourceforge.net/p/lollipop-project/tickets/?source=navbar.

If you find any other bugs, or if you have any fixes/workarounds for any existing
bugs, then please open a ticket on the tickets.

2.6 About this manual

This manual consists of a main file lollipop-manual.tex, and the following input files:

titlepag.tex prelim.tex struct.tex head.tex list.tex

out.tex extern.tex opt.tex comm.tex trace.tex appendix.tex

and the style definition file mandefs.tex.
In addition, you need comment.tex which is used to format this manual, and

btxmac.tex for the BibTEX interface, but these are not really a part of Lollipop.
If you format this manual (which you’ll have to do three times to get the page

numbering and the table of contents straight) you’ll notice something strange. The file
example.tex is read in many, many times. This is because this manual formats its
examples along the way, first writing them out, and then reading them in to show both
their code and their output. This way it is guaranteed that the examples in the manual
will always work.

As a result of formatting this manual you will wind up with, apart from the
usual pdf and log file, with lollipop-manual files with extensions aux, toc, and imp;
oix and cix for indexes of options and commands, and tct, filetix which are for the
examples. For the bibliography there are the BibTEX input file lollipop-manual.bib

and output file lollipop-manual.bbl.
This manual needs quite some resources: here’s what pdfTEX told me it needed.

Here is how much of TeX’s memory you used:

1193 strings out of 495844

16191 string characters out of 6190699

74602 words of memory out of 5000000

3494 multiletter control sequences out of 15000+600000

10941 words of font info for 39 fonts, out of 8000000 for 9000

19 hyphenation exceptions out of 8191

27i,4n,24p,187b,448s stack positions out of

5000i,500n,10000p,200000b,80000s

Because of all the examples this manual takes quite some time to process. A factor vii

2 Preliminaries

of four over the time for a regular document of similar length should be expected.
Ordinary Lollipop documents will proceed far faster.

2.7 The most boring section in this manual

There are a few things about Lollipop that I want to be clear about.

2.7.1 I am going to hurt you and I am not sorry

In the secret handbook for the software industry it says that the final test phase of a
product consists of putting it in stores and having innocent suckers pay good money for
it. (You guessed it, this is the disclaimer section.) So let me just say that Lollipop is
probably good for nothing, at least, I don’t claim it is. And if you hurt yourself by using
it, don’t blame me. I warned you.

2.7.2 Get a Lollipop, give one away

Lollipop is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

The easiest way to get the current copy of Lollipop is to use a more recent TEX
distribution (TEXLive or MikTEX).

2.7.3 The status of Lollipop

Lollipop is still under development. Although I will try not to make any drastic changes
in the user interface (this says nothing about the internals!) I really cannot guarantee
anything. However, I do listen to complaints and suggestions.

If you have suggestions or complaints about the useability of Lollipop or the
implementation, feel free to contact me at persian-tex@tug.org on the Internet.

2.7.4 The wish list

Lollipop is not quite perfect. Here’s a list of things that I am going to be adding in the
near future. If you want to add items to this list, just open a ticket on the tickets.

1 Raggedbottom should really, really be added. Soon!
2 Capitalization and initial capping of titles. If a title appears in mixed case, it

should be possible to have it in all uppercase in running heads. Some code has
been disabled now.

3 A better multi-column mode.
4 Interface to BibTEX seems to largely in place; what happens if you don’t load

btxmac?
5 Inserts, in particular footnotes. At the moment floating figures are entirely

lacking. (As a matter of fact, the plain TEX macros are availble, but I’m not
telling that.)

6 A ‘nomarks’ option to prevent wasting two token lists. Maybe other recourse
saving optio for the expert designer?

7 More sophisticated white space right before and after page breaks. (Use at least
so and so much.)

8 Dynamic topskip.
9 Support for RTL languages (such as Persian).
The following points are debatable: maybe I should just steal a few components fromviii

The most boring section in this manual 2.7

LATEX. Maybe this sort of stuff does not belong in Lollipop.
10 A tabular mode. Personally I always felt \halign to be more than sufficient, but

some people seem to think otherwise.
11 Maths constructs. Some things in the \eqalign vein would be nice.

2.7.5 A bit of history

The Lollipop format was begun in late 1989 to typeset Victor Eijkhout’s Ph.D. thesis,
‘Vectorizable and Parallelizable Preconditioners for the Conjugate Gradient Method’. At
that time Victor was using TEX on an Atari 1040ST. Loading the style definition for the
thesis took about two minutes. Lollipop was heavily augmented in late 1991 to typeset
his book ‘TEX by Topic’, for which he used Sun 3 and Sun 4 computers. Writing this
manual brought Lollipop to its version 0.96; the first public release (version 0.9) was
announced on the internet in October 1992.

Between 1992 and 2014, Lollipop was unmaintained and Vafa Khalighi took over
the development of Lollipop in April 2014.

The name ‘Lollipop’ refers to a quote by Alan Perlis [6], quoted on page 365
of the TEXbook [4]. In a way it’s rather pretentious. The philosophy of the Lollipop

format is described [3, 2].

ix

Options 3.3

Chapter 3

The structure of Lollipop

Lollipop provides tools for realizing the style or layout of a document. Some of these tools are
macros ready to be used by the end user; they concern for instance selection of fonts. Others, the
‘generic constructs’, are for the style designer so that she can use them to program the macros for
the user.

3.1 Lollipop Files

Any Lollipop document has to have a \Start and \Stop command. Before the \Start there can
be style definition commands, but no text. For a number of reasons it is advisable to put as much
of the style definition before the \Start command as possible. You can do that easily by loading
the style as an input file, or by first dumping it as a format (see section 2.4).

Both the start and the stop file load the .aux auxiliary file. None of this should concern
you, really. Expert users who want to have certain actions performed at the start of the document
may want to use \StartCommand to specify what they wish done. See section 11.7.2 for an
example.

3.2 Generic Constructs

There are five ‘generic constructs’: headings, lists, text blocks, page grids, and external items. For
each construct type there is a defining command, for instance \DefineHeading which is followed
a list of ‘options’, terminated by the word ‘Stop’.

Options (possibly with values) have to be separated by a space or a line end; the
keyword Stop has to be followed by a space or a line end. Options may have zero, one or two
values; if there are values, then the first one is separated from the option by a colon, the second is
separated from the first by an equals sign.

\DefineFoo:Bar optiona optionb optionc:value

optiond:valuea=valueb optione

optionf Stop

As a result of this definition, a command \Bar is created. If the Foo construct was a List or
TextBlock, an additional command \BarStop is created.

This command can then be used in the ordinary way, for instance after
\DefineHeading:Foo you can type

\Foo The title

and after \DefineList:Foo you can type

\Foo

\item One item

\item And another

\FooStop

3.3 Options

Options are mostly used to specify how a construct will look. Some options, for instance title,
indicate material that will appear on the page. Other options are interpreted as commands, for
instance IndentAfter:yes in the definition of a heading indicates that the first paragrah after
such a heading will indent. 1

3 The structure of Lollipop

In addition to keywords that only exist as options, commands can be used as options.
Also, single characters are accepted as options. For instance a definition of a subsection heading
can contain:
\DefineHeading:SubSection

[...]

SectionCounter . SubSectionCounter

[...] Stop

(Here and later the [...] will denote arbitrary omitted text.) This definition contains the
commands \SectionCounter and \SubSectionCounter and the . character.

If a number of options appears together in a number of constructs it is convenient to
have an abbreviation for them. This can be done with the command \OptionsMacro as follows.
The options that appear together are given a common name
\OptionsMacro:baz=optiona optionb:value optionc

Stop

(be sure to leave no spaces around the equals sign) and this name is then used as
macro:baz

in the option list wherever the options are needed.
This is for instance a good way of specifying identical white space around all sorts of

constructs without duplicating the typing each time. However, it is only for your convenience: it
doesn’t save any TEX resources or processing time.

3.4 Popular error messages. Not!

Lollipop is a macro package on top of an existing program, TEX. Therefore it is inevitable that
you will get TEX error messages every once in a while. Some of these may confuse you.

Here are a few of the errors that I keep making.

3.4.1 Missing \endcsname inserted

If you forget the second parameter in a \Distance or \SetCounter command, writing for instance
\Distance:TheWidth

instead of
\Distance:TheWidth=15pt

TEX will scan forward, and it can easily bump into something that is highly unexpected given the
context. If this is a \def or \Define... command, a ‘missing \endcsname’ results. If a blank line
follows the incomplete declaration, the following section applies.

3.4.2 Paragraph ended before something was complete

TEX has found a blank line (or a \par command) where this was not expected. See for instance
the previous section.

3.4.3 Missing number

You have used something that you thought was the name of a control sequence, but it wasn’t.
Example:
\Distance:parskip=parundent

Since \parundent is undefined, Lollipop thought you were writing something like
\Distance:parskip=5pt

And yes, the message refers to ‘number’ even though what is missing is a distance.

2

Examples 4.1

Chapter 4

Headings

Headings for sections, chapters, and such, are an essential part of any TEX macro package. In
Lollipop they are maybe a bit less special: all options for headings are general options, meaning
that they also apply to text blocks and lists. There are only two things that distinguish headings:

1 there will be no page break after a heading;
2 there is no closing command for a heading.

4.1 Examples

Headings are defined by \DefineHeading. The most obvious element in a heading is the title,
marked by the option title. The title is anything that follows the heading command, upto the
first empty line.
\SomeHeading Some title

And some text following it.

The title has to be included in a line or a textcolumn for proper handling (see also section 10.3.
5). For titles that do not exceed one line, the line option suffices (section 10.3.3); if a title is
possibly more than one line long, the textcolumn option has to be used (section 10.3.4.

Example 4.1

\DefineHeading:TestSection Style:bold

line:start TestSectionCounter Spaces:2 title line:stop

Stop

\TestSection The Title

The text after the heading.

1 The Title

The text after the heading.

By default, the text after a heading is indented. Overriding this default behaviour is done with
the option indentafter.

Example 4.2

\AlwaysIndent:no % as a default, don’t indent paragraphs

\DefineHeading:TestSection Style:bold

line:start TestSectionCounter Spaces:2 title line:stop

indentafter:yes Stop

\TestSection The Title

The text after the heading.\par

The second paragraph after the heading

1 The Title

The text after the heading.
The second paragraph after the heading

3

4 Headings

Usually headings come in a hierarchy, where the counter of one type, for instance a subsection, is
reset everytime the counter of a higer level is stepped. In Lollipop, this subordinating of headings
is done by declaring one counter to be governed by another (counters are explained in full detail
in section 11.1).

Example 4.3

\DefineHeading:TestChapter Style:bold

line:start TestChapterCounter Spaces:1 title line:stop

Stop

\DefineHeading:TestSection Style:italic

line:start TestChapterCounter : TestSectionCounter . Spaces:1

title line:stop Stop

\GoverningCounter:TestSection=TestChapter

\TestChapter Level One Heading\par

\TestSection Level Two Heading\par

Some text.

\TestSection Level Two again\par

More text.

\TestChapter Level One is Stepped\par

\TestSection Level Two\par

Again text.

1 Level One Heading

1:1. Level Two Heading

Some text.

1:2. Level Two again

More text.

2 Level One is Stepped

2:1. Level Two

Again text.

Headings will often wind up in a table of contents. For this, the table of contents will have to be
declared:
\DefineExternalFile:contents=toc

and its formatting will have to be specified, but also every construct that writes to this file has to
be declared as such.
\DefineHeading:TestSection

[...]

external:contents title external:stop

Stop

Usually, the title is all that has to be written out (the counter value is written by default), but
the possibility exists for writing out other information as well. See section 9.2.

4

List indentation 5.2

Chapter 5

Lists

Lists in Lollipop are defined by \DefineList:
\DefineList:Foo [...]

item:start [...] item:stop

[...] Stop

and the resulting list is used as
\Foo

\item [..text..]

\item [...]

\FooStop

where the closing command can be abbreviated as \>.

5.1 Label alignment

In general there is a default position for labels; either aligning with the left or the right side of
the margin over which the list is indented. The two ways are indicated with the option item:

item:left [...] item:stop

and
item:right [...] item:stop

respectively. Specifying item:start gives the default left aligning position.

Example 5.1

\DefineList:enumerate

item:start itemCounter) item:stop Stop

\DefineList:enumerateright

item:right (itemCounter) Spaces:1 item:stop Stop

\enumerate\item Some item

\item And another

\enumerateright\item First nested item

\item Next nested item\>

\item And back to the original list.\>

1) Some item
2) And another

(A) First nested item
(B) Next nested item

3) And back to the original list.

5.2 List indentation

The amount over which the text of a list (excluding the item labels) is indented is controled by a
list of indentations. This is explained in section 11.4. The indentation amount is most of the time
also equal to the value of the paragraph indentation outside that list.

In the rare case where the indentation of a list has to be controlled explicitly, there is an
option indentation with one value.
\DefineList:SomeList indentation=30pt [...] Stop 5

5 Lists

5.3 Label style

Every list that uses the itemsign option is an ‘itemize’ list, no matter what it’s name, and there
is a counter in Lollipop that keeps track of how deep you are in itemize lists. Similarly, every list
that uses itemCounter is an ‘enumerate’ lists, and these are counted too.

On every next level a new style of item sign or counter is used. For item signs this is in
sequence: •, ◦, –, and · for all higher levels. The style of sign can be changed by \SetItemSign:

\SetItemSign:6=m

where the letter indicating the sign is interpreted as: b • (bullet), c ◦ (circle), d � (diamond), m —
(em-dash), n – (en-dash), . ·.

Similarly, the counter style can be set by \SetItemCounterRepresentation:

\SetItemCounterRepresentation:2=i

where the letter representing the style is interpreted as: 1 Arabic, I uppercase roman, i lowercase
roman, A uppercase characters, a lowercase characters.

5.4 Label width

The default width for a label is at most the width of the margin over which the list is indented.
Using item:left or item:right will have the label pushed to the left or right side of this
margin respectively. Now what if the label material is wider than this margin? Usually you want
the label then to expand to the right, and that is indeed what happens, unless you specify
labeloverflow with value left, in which case the right boundary of the label will not budge,

and the label will start protruding into the outer margin.

5.5 Description lists

A common type of list is the type where each item label consists of a piece of text. Such a
list is called a ‘description’ list in Lollipop, and it recognized by the occurrence of the option
description in its definition. A description list can also use the item sign or the item counter,

of course.
Using a description list, the description text is everything that follows the command

\item, up to the end of the line.

Example 5.2

\DefineList:TestList

item:left Style:bold itemCounter . Spaces:1 description

Spaces:2 item:stop Stop

\TestList\item Do

A deer, a female deer.\item Re

According to mr. Fowler only a legal term.

\item Mimi Jett

The owner/founder of ETP\>

1. Do A deer, a female deer.
2. Re According to mr. Fowler only a legal term.
3. Mimi Jett The owner/founder of ETP

As you can see, the problem of label overflow can easily occur with description lists. Thus it is a
good idea to end the item material with some white space, as in the above example.

Exceptional situation: if you use an empty description text, you should write \item{}.6

List titles and list tails 5.8

5.6 Suspended lists

Occasionally the is a need to resume an enumerate list, that is, after a piece of text that is not
part of the list an enumerate list should start counting from the previous value on. In Lollipop
this phenomenon can be realized by never ending the enumerate list, and simply moving the text
one indentation level back with \PopIndentLevel.

Example 5.3

\DefineList:enumerate item:left itemCounter item:stop Stop

\enumerate\item First some item\par

{\PopIndentLevel \Indent:no

This text seems to be outside the list. Don’t you believe it.\par}

\item And another item\>

1 First some item
This text seems to be outside the list. Don’t you believe it.
2 And another item

Note that the ‘popped’ text has to be in a group (otherwise the subsequent items will also be
popped back), and it has to be separated from the preceding and following text by \par; the
trailing \par has to be in the group.

5.7 Item counter manipulation

The item counter can be manipulated explicitly. This is necessary for instance for starting a list
at another value than one. What you need to realize here is that the command \item starts by
incrementing the counter. Furthermore, the only way to access the item counter is through the
commands for counters; see section 11.1.

Example 5.4

\DefineList:enumerate item:left itemCounter item:stop Stop

\enumerate \SetCounter:item=-1

\item Escape: usually the backslash.

\item Begin Group.\>

0 Escape: usually the backslash.
1 Begin Group.

5.8 List titles and list tails

Lists can have titles. The title follows the command that invokes the list, in the usual manner.
Material to follow the list can also be specified: anything following the option text is considered
to be trailing material.

Example 5.5

\DefineList:TestList hrule line:start Style:bold title line:stop

item:left Style:italic itemCounter item:stop

text vwhite:3pt hrule Stop

\TestList In the last fiscal year, have you:\par

\item Eaten peanuts? \item Walked the dog? 7

5 Lists

\item Bought a Frank Zappa record?\>

In the last fiscal year, have you:
1 Eaten peanuts?
2 Walked the dog?
3 Bought a Frank Zappa record?

In case you wonder what happens with textual material after item:stop and before any text,
well, that is taken to be inserted immediately after each item label.

5.9 Between the items

There are special list options controlling what happens in between items. Lollipop has an option
breakbetween, analogous to breakbefore and breakafter; see section 10.5. This item be

default has a value of −50, implying that breaks in between items should be preferred slightly
over breaks in between the lines of an item.

Similarly, there is an option whitebetween controlling the amount of white space in
between items that is analogous to whitebefore and whiteafter. Like these two options, it can
also be set by the \Distance command (section 11.7).

5.10 Indentation in lists

An item can be considered to be consisting of at least one paragraph. That paragraph is
never indented. For the behaviour of any next paragraph within the same item, the option
indentinside can be used. This option has values yes/no. In case paragraphs inside an item

indent, the indentation amount is level-controlled; see section 11.4.

8

The text option 6.1

Chapter 6

Text Blocks

The ‘text block’ is a way of treating a moderate sized chunk of text in a different way from the
surrounding text. Text blocks are created by \DefineTextBlock. Here is a small example.

Example 6.1

\DefineTextBlock:Quote

PushIndentLevel PointSize:9 SetFont text Stop

\Indent:no In some context it has been written that

\Quote No man is an island.\QuoteStop

In another:

\Quote Run don’t walk to the nearest island.\>

Sometimes one would wish women weren’t so logical.

In some context it has been written that

No man is an island.

In another:

Run don’t walk to the nearest island.

Sometimes one would wish women weren’t so logical.

Note that the text block has an explicit closing command, consisting of the name of the block
followed by Stop, and that implicit closing by \> is possible.

6.1 The text option

Text blocks have only one specific option: text. This option is used to separate material heading
the block from material trailing the block. Example:

Example 6.2

\DefineTextBlock:DisplayEq

whitebefore:abovedisplayskip whiteafter:belowdisplayskip

line:start white:parindent $ displaystyle text $ line:stop Stop

The formula

\DisplayEq e^{\pi i}+1=0\>

contains nature’s five most interesting constants.

The formula

eπi + 1 = 0

contains nature’s five most interesting constants.

Here one dollar comes before the text, and one after, so the first is inserted by \DisplayEq and
the second by the corresponding closing command.

Material before and after the text should usually not be broken. Hence \nobreak is
automatically inserted. See the \Example macro for this manual: pages should not be broken after
rules, or around the text ‘example xyz’. 9

6 Text Blocks

6.2 More examples

A text block can encompass more than one paragraph, so the options indentinside and
indentfirst are particularly useful here.

Example 6.3

\AlwaysIndent:no

\DefineTextBlock:TestBlock PushIndentLevel

indentafter:yes indentfirst:no indentinside:yes

text unskip hfill $ bullet $ par Stop

One paragraph.\par The next paragraph

\TestBlock Inside the block one paragraph.\par

Inside the block the next paragraph.\>

Outside the following paragraph.\par And the last paragraph.

One paragraph.
The next paragraph

Inside the block one paragraph.
Inside the block the next paragraph. •

Outside the following paragraph.
And the last paragraph.

10

Page dimensions 7.1

Chapter 7

Output

Every page is formatted according to a ‘page grid’ consisting of three elements:

1 the page head, this is everything that’s over the running text;
2 the page foot, this is everything that is below the running text;
3 the running text. TEX acts as if text is on a long scroll, and the running text part of a

page is simply a portion cut off from this scroll.

Either or both of the head and foot of the page can be empty, but usually one of the two contains
a page number.

Example 7.1

\OptionsMacro:ManPageSize=raggedbottom:10pt topskip:12pt

height:page=5cm width:page=6cm Stop

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop

pagerule band:start PageCounter band:stop Stop

\TestPage

This page does not contain much special.\EjectPage

This page is hardly better.

This page does not contain much
special.

11

This page is hardly better.

12

This example illustrates how you first define a page grid by \DefinePageGrid, and then activate
it by calling its name. That last action is in fact not necessary: each definition of a page grid
automatically installs that grid as the current one.

7.1 Page dimensions

Most of the time it is easiest to specify the total height of a page, that is, including head and
bottom, but sometimes it is more convenient to specify the height of the text, and let the head
and foot simply go over and under that.

In the first case you can give the command \Height with two parameters:

\Height:Page=23.5cm

or inside a page grid definition the option height:page=....
In the second case you can give the command

\Height:Text=19.55cm 11

7 Output

or inside a page grid definition the option height:text=....
In page grid definitions there is the additional option height:lines=23.
The \Height command cannot be used in a page grid definition.

7.2 Positioning the page on the paper

If your printer driver is up to specs (and you have not done any creative macro writing) it should
have the upper left corner of the text landing at 2.54cm from the top and left side of the paper. If
the result is not to your liking, you can shift the page by
\Distance:hoffset= ...

\Distance:voffset= ...

These offset parameters are zero ordinarily, and they indicate the extra shift added to the
customary 2.54cm in horizontal and vertical direction.

7.3 Page head, foot, text

Somewhere in the page grid the option text has to appear. This option has to be inside a
textband:

textband:start text textband:stop

This is not a case of overspecification, because inside a textband the text option can appear more
than once. In this manner a multicolumn page grid can be specified.

Example 7.2

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text hwhite:10pt text textband:stop

pagerule band:start PageCounter band:stop Stop

\FlushRight:no \sometext

Just a bit of
words, words. Just
a bit of words,
words. Just a bit
of words, words.
Just a bit of
words, words. Just
a bit of words,
words. Just a bit
of words, words.
Just a bit of

words, words. Just
a bit of words,
words. Just a bit
of words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

12

Next to the option textband there is band. Both are ways of creating a page wide band. The
option band is used for all material that is not a text column, for instance footers, as in the above
examples.

The option band can have one unusual parameter: invisible. This makes the band act
as if it has zero height or width, depending on whether it is below or above the text, respectively.

Example 7.3

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text hwhite:10pt text textband:stop

pagerule

band:invisible block:start Style:bold PageCounter Spaces:212

Page head, foot, text 7.3

stickout:left band:stop Stop

\FlushRight:no \sometext

Just a bit of
words, words. Just
a bit of words,
words. Just a bit
of words, words.
Just a bit of
words, words. Just
a bit of words,
words. Just a bit
of words, words.
Just a bit of

words, words. Just
a bit of words,
words. Just a bit
of words, words.
Just a bit of
words, words.
Just a bit of
words, words.
Just a bit of
words, words.

13

7.3.1 More about text bands

The text band is that part of the page that has the text in it. You can also put other material
in it, such as rules or white space.

Example 7.4

\DefinePageGrid:TestPage macro:ManPageSize pagerule

textband:start vrule white:3pt text white:3pt vrule textband:stop

pagerule band:start white:fillup PageCounter band:stop Stop

\TestPage This page contains some text, a bit more text,

and even more than that. In all still just a few lines.\EjectPage

This page contains more text, still more text, and still more.

This page contains some text, a bit
more text, and even more than that.
In all still just a few lines.

13

This page contains more
text, still more text, and still more.

14

In the previous example the width of the page was specified. If we only give the width of the
text, the page width is calculated dynamically.

Example 7.5

\DefinePageGrid:TestPage macro:ManPageSize

textband:start vrule white:3pt text white:3pt vrule textband:stop

pagerule band:start white:fillup PageCounter band:stop Stop

\noindent This page contains some text, a bit more text,

and even more than that. In all still just a few lines.\EjectPage

This page contains more text, still more text, and still more.

13

7 Output

This page contains some text, a bit
more text, and even more than that.
In all still just a few lines.

13

This page contains more
text, still more text, and still more.

14

Note how the pagerule and band objects stretch with the page.

7.3.2 Topskip

In between the page head and the text is some white space, the topskip, with special properties.
The topskip is defined from the bottom of the head to the bottom of the first line of the text. If
the height of this first line varies from page to page the topskip acts as a buffer, keeping the
bottom-to-bottom distance constant.

Topskip is set by the option topskip, for example
topskip:25pt

but if this option is left out, the page grid uses the value of \topskip that was current at the
time of the definition. Unfortunately there is no way to change this value after the definition.

7.4 The page number

The page number behaves as if it had been defined by
\NewCounter:Page

\CounterRepresentation:Page=1

Thus you can use any command from section 11.1 on it. For instance, you can have page
numbers in roman numerals by specifying
\CounterRepresentation:Page=I

The page number is typically used as the option PageCounter, but for some applications the
corresponding command \PageCounter can be used.

If you process a Lollipop document you see that everytime a page is generated, an
item such as [8,7] is written on the log file or the screen. Most of the time the two numbers
will be the same, as in [8,8], but they will differ if you have tinkered with the page number.
The first number is the ‘sheet counter’: it counts how many pages you have produced so far. The
second number is the value of \PageCounter for the page that was written out. Take a look at
the log file for this manual for an example.

7.5 Page tests

The page grid definition can set/query several properties of the page. The following tests have
been provided (see section 11.9 for tests):
\DefineTest:IsRightPage

\DefineTest:IsLeftPage

\DefineTest:FirstPage

\DefineTest:LastPage

\DefineTest:FlushBottom14

Running heads / footers 7.6

• The tests for left/right pages are done by testing whether the page number of odd or
even.

• The first/last page tests can be used either for the whole document, or for a file that’s
loaded as an \InputFile.

• The first page test doesn’t work at present.

Example 7.6

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start ifIsLeftPage else hwhite:fillup fi PageCounter

band:stop Stop \SetCounter:Page=12

This is a left hand page. \EjectPage

This page is on the right side of a spread.

This is a left hand page.

12

This page is on the right side
of a spread.

13

7.6 Running heads / footers

Above it was explained how pages can be given a head and foot part. Quite often you want
changing information in such parts, for instance the head of a left page often contains the
number or title of section that was current when that page started; the head of a right page
often contains the number or title of the section that was current when that page ended.

In Lollipop all constructs that have a title or a counter can have that information
referenced in page grids.

\FirstPlaced:SectionTitle Take the title of the first section that started on this page, or the
last one that started before this page if no section started on this page.

\LastPlaced:SubSectionCounter Take the title of the last subsection that started on this
page, or the last one that started before this page if no subsection started on this pgae.

\PreviousPlaced:SectionCounter Take the counter value of the last section that started
before this page.

Example 7.7

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic FirstPlaced:HeadTitle

white:fillup PageCounter band:stop Stop

\DefineHeading:TestHeading Style:bold

line:start TestHeadingCounter Spaces:2 title line:stop Stop

\TestHeading A first section\par And some text.\EjectPage 15

7 Output

This page contains text. \TestHeading A second Section\par

And more text.

1 A first section

And some text.

16

This page contains text.

2 A second Section

And more text.

17

The commands \FirstPlaced and \PreviousPlaced are typically used on left pages;
\LastPlaced is more common on right pages. You can test on what sort of page you are; see
section 7.5.

Example 7.8

\DefinePageGrid:TestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic

ifIsLeftPage FirstPlaced:HeadTitle white:fillup fi

PageCounter

ifIsRightPage white:fillup LastPlaced:HeadTitle fi

band:stop Stop \SetCounter:Page=10

\DefineHeading:TestHeading Style:bold

line:start TestHeadingCounter Spaces:2 title line:stop Stop

\TestHeading A first section\par And some text.

\TestHeading Second section\par More text.\EjectPage

\TestHeading Third section\par Is on the right page.

\TestHeading Fourth section\par Concludes this page.

1 A first section

And some text.

2 Second section

More text.

10

3 Third section

Is on the right page.

4 Fourth section

Concludes this page.

11

7.7 Alternating page grids

In Lollipop it is very easy to switch page grids with the option NextPageGrid: you simply specify16

Additional User Control 7.8

NextPageGrid:otherpage

as one of the options in the definition. If no next grid is indicated, the same page grid keeps being
used continuously until another page grid is activated explicitly.

Example 7.9

\DefinePageGrid:LTestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic

PageCounter white:fillup FirstPlaced:HeadTitle

band:stop NextPageGrid:RTestPage Stop

\DefinePageGrid:RTestPage macro:ManPageSize

pagerule textband:start text textband:stop pagerule

band:start Style:italic

LastPlaced:HeadTitle white:fillup PageCounter

band:stop NextPageGrid:LTestPage Stop

\SetCounter:Page=42

\DefineHeading:TestHeading Style:bold

line:start TestHeadingCounter Spaces:2 title line:stop Stop

\LTestPage

\TestHeading A first section\par And some text.

\TestHeading Second section\par More text.\EjectPage

\TestHeading Third section\par Is on the right page.

\TestHeading Fourth section\par Concludes this page.

1 A first section

And some text.

2 Second section

More text.

42

3 Third section

Is on the right page.

4 Fourth section

Concludes this page.

43

Another very useful application of this mechanism is to have a special definition for the opening
page of a chapter. This manual uses a one-shot page grid \EmptyPage to remove the header and
footer on the title page. It installs \LeftPage as the next grid.

7.8 Additional User Control

7.8.1 Elementary manipulation

There are a few commands for simple page manipulation:

\EjectPage The current page is filled up with white space, and a new page is started.

\ToRecto As \EjectPage but if the next page is a left page (meaning that the page number is
even) then the page number is increased by one, so that the next page is a right hand
page.

\ToVerso As \ToRecto, except that the next page is a left page. 17

7 Output

Additionally, \NoPages lets all formatting and updating of values be performed, but no pages are
written to the dvi file; \PagesOut reverts the effect of previous command. Note that \NoPages

does not incur any savings in time: full processing of the document is performed.
When a page is finished it rests in box \WholePage. Then a call is made to

\CurrentShipout, which is by default \shipout\box\WholePage. However, you are free to
define it otherwise. If your \CurrentShipout does not actually ship out pages, you may want to
set \CountSheetsno to prevent the effective page counter from being updated.

Redefining \CurrentShipout usually goes together with \SuspendOutput and
\ResumeOutput. These commands temporarily save the page number and the current state of the

page, including the current definition of \CurrentOutput. (This is necessary because a number of
parameters concerned are changed by global assignments.) See the definition of \OutputExample
in the appendix of this manual for an elaborate example.

If you want to see te output routines in action, specify
\Trace:out

In addition
\Trace:mark

tells you what information is being saved for running head and foot lines.

18

What and how do you reference? 8.1

Chapter 8

Referencing

In manuals and scientific documents you often want to write something like ‘see Chapter 4’.
But what if you shuffle the chapters a bit? It would be nice if the number would be updated
automatically. With Lollipop, as with many other TEX macro packages, this is easily done.

Here is an example to set the mood for the rest of this chapter. The sort of thing that is
referred to most is a heading. So suppose you want to refer to a section number.

Example 8.1

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title

line:stop Stop

\TestSection[one:section?] First section\par

After this section will come section~\ref[other:section!].

\TestSection[other:section!] Another section\par

This is the section that came after section~\ref[one:section?].

1 First section

After this section will come section 2.

2 Another section

This is the section that came after section 1.

8.1 What and how do you reference?

You can reference not only headings but everything that has a counter. Thus all generic constructs
can be referenced, and in addition you can reference item numbers in a list (there are examples of
this latter possibility in section 8.4). The simplest way of referencing something is to put the key
in square brackets behind it:

\Section[this:section] The title of This Section

You can then reference the key by \ref, or the page where it appeared by \pgref:

Section \ref[this:section] on page \pgref[this:section]

As you may have guessed from the above examples, keys can contain all sorts of characters. Only
brackets, braces, and the hash sign are excepted. You get an error message if you try to use the
same key twice.

Another way of declaring a key is to use the command \label carrying the key

\label[the:key]

This can be useful if you want to declare two keys for a single reference. Make sure that the
\label command is not part of the title. Unexplained phenomena occur if you do that. Instead
put the label after the construct you want to reference:

\Section Precautions and remedies

\label[sec:precautions]\label[sec:remedies]

In this section ... 19

8 Referencing

8.2 The shape of the reference

By default, a reference consists of just the number of the thing you reference. There are two ways
in which you can change this, one systematic, and one on-the-fly.

8.2.1 Defining the shape of the reference

You can customize the way an object is referenced by using the option label in its definition.
For instance, often you want things like parentheses around references. Putting this information
in the label definition saves you a lot of work in case you change your mind later.

Example 8.2

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title line:stop

label:start (TestSectionCounter) label:stop Stop

\TestSection[one:section?2] First section\par

After this section will come section~\ref[other:section!2].

\TestSection[other:section!2] Another section\par

This is the section that came after section~\ref[one:section?2].

1 First section

After this section will come section (2).

2 Another section

This is the section that came after section (1).

Another use of customized labels is including other counters in the reference:

Example 8.3

\DefineHeading:TestChapter

line:start Style:bold TestChapterCounter / title line:stop Stop

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title line:stop

label:start TestChapterCounter .

TestSectionCounter label:stop Stop

\TestChapter First chapter\par

Pretty short chapter

\TestChapter Second chapter\par

\TestSection[one:section?3] First section\par

After this section will come section~\ref[other:section!3].

\TestSection[other:section!3] Another section\par

This is the section that came after section~\ref[one:section?3].

1/First chapter

Pretty short chapter

2/Second chapter

1 First section

After this section will come section 2.2.20

Local references 8.3

2 Another section

This is the section that came after section 2.1.

A more surprising application of explicit definition of labels is inclusion of the title in the
reference.

Example 8.4

\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title line:stop

label:start TestSectionCounter literal: Spaces:1

Style:italic title label:stop Stop

\TestSection[one:section?4] First section\par

After this section will come section~\ref[other:section!4].

\TestSection[other:section!4] Another section\par

This is the section that came after section~\ref[one:section?4].

1 First section

After this section will come section 2 Another section.

2 Another section

This is the section that came after section 1 First section.

8.2.2 Explicit specification of the reference

For every specific object referenced you can specify the reference by using an optional argument
before the label key. Have a look at the next example.

Example 8.5

\DefineHeading:TestSection counter:A

line:start Style:bold TestSectionCounter . Spaces:2 title line:stop

Stop

\TestSection[ref:one] Lalala\par

This is before section \ref[ref:two].

\TestSection<‘the Didi section’>[ref:two] Dididi\par

This is after section \ref[ref:one].

A. Lalala

This is before section ‘the Didi section’.

B. Dididi

This is after section A.

This mechanism is also used in lists, where it’s mostly useful for bibliographies generated by
BibTEX; see section 8.4.2.

8.3 Local references

Some documents are collated out of parts that were documents in themselves. The Lollipop
command \InputFile facilitates in a number of ways working with such a segmented file (see
section 11.8). One of the problems with input files is that in such a case it may happen that the 21

8 Referencing

same reference key is used in more than one part of the document. This phenomenon is not at all
unknown in multiple authored documents. Ordinarily this would result in incorrect references.

To prevent such collisions Lollipop can use local references: the command
\LocalReferences has default no, and specifying
LocalReferences:yes

creates local aux files for each input file.

8.4 Bibliography citations

Lollipop has an interface to BibTEX. However, since a bibliography is just a list, referencing items
in it is quite easy, even if you don’t use BibTEX.

8.4.1 Bibliographies without BibTEX

This section doesn’t tell you anything that cannot be found elsewhere in this manual. The
following two examples define a bibliography as just a list, and by giving labels to the items you
can refer to them.

Example 8.6

\DefineList:BibList item:left [itemCounter] item:stop

label:start [itemCounter] label:stop Stop

In this example we shall have occasion to refer to

\ref[Abee80] and~\ref[Ceede79].\par

\Indent:no Bibliography

\BibList \item[Ace55] C.D. Ace, Inscrutible title.

\item[Abee80] E.F. Abee, Worthless drivel.

\item[Ceede79] G.H. Ceede, Contractual obligation.

\>

In this example we shall have occasion to refer to [2] and [3].
Bibliography

[1] C.D. Ace, Inscrutible title.
[2] E.F. Abee, Worthless drivel.
[3] G.H. Ceede, Contractual obligation.

Here is a way to customize the label (if you need to refresh your memory about description lists,
see section 5.5).

Example 8.7

\DefineList:BibList item:left [itemCounter] item:stop

label:start (description) label:stop Stop

In this example we shall have occasion to refer to

\ref[Abe80] and~\ref[Ceedee79].\par

\Indent:no Bibliography

\BibList \item[Aace55] Aace55

C.D. Aace, Inscrutible title.

\item[Abe80] Abe80

E.F. Abe, Worthless drivel.

\item[Ceedee79] Ceedee79

G.H. Ceedee, Contractual obligation.

\>

22

Obscure details 8.5

In this example we shall have occasion to refer to (Abe80) and (Ceedee79).
Bibliography

[1] C.D. Aace, Inscrutible title.
[2] E.F. Abe, Worthless drivel.
[3] G.H. Ceedee, Contractual obligation.

8.4.2 Bibliographies with BibTEX

Lollipophas an interface to the popular BibTEX bibliography database program, based on the
‘BtxMac’ macros by Karl Berry and Oren Patashnik. Lollipop is set up for them, you only have
to \input the file btxmac.tex. (The version of btxmac used to test this is 0.99h.) You can find
global information about BibTEX in the LATEX book [5], since BibTEX was originally written for
LATEX.

Since there is some redefining going on between btxmac and Lollipop you have to load
the btxmac file before the \Start command (see section 3.1).

Since the btxmac file already has a default way of formatting the bibliography you can
get away with just putting the lines
\bibliography{ <bfile> }

\bibliographystyle{ <bstyle> }

in your file wherever you want the bibliography.
If you want to define your own bibliography, you have to use \DefineBBL which is

practically a synonym for \DefineList:BBL, so you can see in the ‘lists’ chapter of this manual
what options apply.

For example:
\DefineBBL line:start Style:italic literal:Literature line:stop

item:left [begingroup Style:bold itemCounter

endgroup] item:stop

Stop

You refer to a bibliography item by \bibref, as in \bibref[Knuth80]. This command has a
very simple definition
\def\bibref[#1]{[\ref[#1]]\nocite{#1}}

so you can easily redefine it. For instance
\def\supref[#1]{$^{\rm \ref[#1]}$\nocite{#1}}

will make your references into superscripts. Make sure that the call to \nocite appears, because
that generates the request for BibTEX.

The Lollipop command \WriteExtern:no (see section 9.1) defines \noauxfile to
prevent regeneration of the bib entries in the .aux file. You don’t have to do that anymore.

8.5 Obscure details

For the sake of efficiency, not all macros in Lollipop automatically accept labels for referencing,
only the ones that use the label option, or that have a counter (remember, the default form
of the reference is just the counter). If you want a macro that has no counter and no label
specification to accept a label, use the option haslabel. One reason for doing this is that you
have access to the label itself through the control sequence \RefLabel.

23

9 External Files

Chapter 9

External Files

Some document require information to be collected during a run. Such information typically is a
table of contents or index, and it is gathered in an external file. (The reason for gathering such
information in a file at all is that often some external manipulation, for instance sorting of an
index, is needed.) Since there are many possibilities for external files (mathematical monographs
may have a list of definitions, or a list of notations) Lollipop does not predefine such files, but
supplies all of the tools for creating them.

External files involve four actions:

1 The file should be declared.
2 It should be specified what information is to be written to the file.
3 The formatting of the contents of the file has to be specified.
4 The file has to be loaded.

You can have at most 15 external files per document.

9.1 Declaring and loading an external file

The first act, declaring the existence of the external file is very easy with the command
\DefineExternalFile: an internal name and a three-character file name extension have to be

given as parameters.

\DefineExternalFile:contents=toc

With this definition, if the document is called book.tex then the ‘contents’ will be gathered
in a file called book.toc. (The declaration of an external file has to come before any calls to
\ExternalItem or any options external that write to this file.)

For each external file Foo there is a command to determine whether that file will be
regenerated in the next run of TEX: \WriteFoo with values yes/no will allow or prevent the
file being regenerated. The value yes is default. The command \WriteExtern (values yes/no)
can be used to prevent writing out any external files (including the .aux file that keeps track of
references).

The final act, loading an external file, is as easy as declaring it: use
\LoadExternalFile as in

\LoadExternalFile:contents

This does not cause any page breaks or headings to be set over the loaded material, so you have
to do that explicitly.

9.2 Generating external files

Next, macros that write to the table of contents have to declare this information. The
external option is used for this. Any counter that the construct has will be written out

automatically, and the style designer usually has to specify only that the title will be written out.

\DefineHeading:Section

[...]

external:contents title external:stop

There is no objection to a construct writing information to more than one external file.
If you write more than just title to an external file, know that any control sequence

you specify is automatically protected from expansion. See section ?? for an exception to this.24

Example 9.4

Other titles can be included by specifying title:OtherThing. Using OtherThingTitle

would not work, because of the protection of control sequences mentioned above.
You can write arbitrary information to an external file, if you see a reason to do so, by

\ToExternalFile, which takes a file name and an text argument. The example below has an
instance of this command. In order to format this information you have to define an external
construct of type \anon.

9.3 Formatting an external file

The hardest part is declaring the formatting of an external file. For this a separate generic
construct exists: the ‘external item’ with defining command \DefineExternalItem. For example,
if \Section writes to contents, than an external item Section corresponding to this file has to
be declared. The option file is use to declare to which file the external item belongs. This way
the same name can be reused for more than one file.
\DefineExternalItem:Section file:contents

[...] Stop

An external item is basically a list with just one item. Thus, the option item is available. The
elements of an external item are the label (the counter value), the page number where the
information was generated, and the title. For the label (say for a construct \Foo) an option
FooLabel is created. Thus the typical formating looks like
\DefineExternalItem:Chapter file:contents

item:left ChapterLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

In fact, a control sequence \FooLabel is created, which can be used in other external items.
Since an external item is a list in itself, you have to pull a certain trick to get

items for subsections to indent further than those for sections. This is what the command
\PushIndentLevel was designed for.

A typical indented item looks like:
\DefineExternalItem:SubSection file:contents

PushIndentLevel PushIndentLevel

item:left SectionLabel . SubSectionLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

9.4 Example

The following example is for a typical table of contents that records sections and subsections. In
good old-fashioned style, the subsections are indented with respect to the sections.

25

10 Options

Chapter 10

Options

This chapter discusses the various options that are common to all Lollipop constructs.

10.1 Titles

Any construct can have a title, although of course it is most useful for headings. A construct has
a title if the option title appears. Example:

\DefineHeading:Section [...]

Style:bold title

[...] Stop

will define a \Section macro that has a title. The macro is then used as

\Section The title of this section

Some text in this section.

that is, the title is delimited by an empty line.
The title is actually available as a macro \FooTitle, so that you can write a macro, for

instance

\def\ComplicatedTitle{ .. \hrule ...

\vrule ... \vbox \bgroup ...

\FooTitle ...

}

and use this macro instead of the title option

\DefineBar:Foo ...

ComplicatedTitle

... Stop

However, since the option title now doesn’t appear anymore, it becomes necessary to specify
explicitly that there is a title. This can be done with the HasTitle option. For instance, you
define

\DefineBar:Foo ...

HasTitle

ComplicatedTitle

... Stop

where \ComplicatedTitle is a macro that formats the title.

10.1.1 Short titles

The option HasTitle can have a parameter short, denoting that the title is not delimited by an
empty line (or \par) but by the line end. For an example see section 13.2.

10.2 Counters

There are three ways for Lollipop to figure out that a generic construct has a counter. First of all,
in

\DefineFoo:Bar [...]

BarCounter [...]

the \BarCounter will be defined automatically.26

Chunks of text 10.3

Additionally there is the option counter, which can be used to declare the
representation of the option, for instance counter:i allocated a counter that is printed in
lowercase roman numerals. For the available representations, see 11.1.1.

Finally, if the counter is only used in a macro, the option HasCounter will cause the
counter to be created anyhow. This is analogous to the HasTitle option.

10.2.1 Counter synonyms

Every once in a while you may want different constructs to use the same counter. For instance, if
your book has definitions, theorems, lemmas, corollaries and notations, it may confuse the reader
if they all have their own counter. The numbering would seem to jump all over the place.

A ‘counter synonym’ can be declared in Lollipop by a slight abuse of the counter

option.

Example 10.1

\DefineTextBlock:Theorem counter:1 begingroup Style:bold

literal:Theorem Spaces:1 TheoremCounter Spaces:2 endgroup

text Stop

\DefineTextBlock:Corollary counter:Theorem begingroup Style:italic

literal:Corollary Spaces:1 CorollaryCounter Spaces:2 endgroup

text Stop

\DefineTextBlock:Definition counter:Theorem begingroup Style:roman

literal:Definition Spaces:1 DefinitionCounter Spaces:2 endgroup

text Stop

\Definition We define a {\it Foo} to be an arbitrary object\>

\Theorem Foos have arbitrary properties\>

\Corollary Foos are extremely valuable\>

\Corollary Foos are extremely worthless\>

\Theorem Foos don’t exist\>

Definition 1 We define a Foo to be an arbitrary object

Theorem 2 Foos have arbitrary properties

Corollary 3 Foos are extremely valuable

Corollary 4 Foos are extremely worthless

Theorem 5 Foos don’t exist

You can only declare a counter to be synonym for something that has already been created. In
the above example you cannot define the \Theorem after the \Corollary.

10.3 Chunks of text

Especially in headings, short chunks of text may need a special treatment. For instance, the
number may have to be filled to a certain width, or a line may have to be drawn of the exact
length of the title. Lollipop have various general options (so they can also be used in other
contexts than headings) for handling pieces of text.

10.3.1 The block option

The block option takes up a piece of text and fits it on one line. It can measure the text, or set
the size. Also there are a number of ways of placing a block. 27

10 Options

Basic usage:
block:start [...] block:stop

This takes the enclosed text, and reproduces it. This is mostly interesting in combination with
textcolumn, see 10.3.4.

block:hang [...] block:stop

The resulting block is dropped until its top touches the baseline. For uniformity of appearance,
the resulting width of the block can be specified:

block:start [...] fillupto:20pt

The name of a \Distance parameter can be used here.

Example 10.2

\DefineHeading:TestHeading

line:start block:hang PointSize:8 SetFont

TestHeadingCounter fillupto:20pt

block:hang PointSize:14 SetFont title block:stop

line:stop Stop

\TestHeading Top Aligning the Title

1 Top Aligning the Title

The block is usually in between the margins of the text, but it can be made to stick out into the
margin, by closing it with the option stickout. For the left margin this done as

block:start [...] stickout:left

and for the right margin
block:start [...] stickout:right

The size of the box can be specified, for instance as
block:start [...] stickout:left=20pt

For a left box the material in it is pushed to the left edge, for a right sticking box it is shifted to
the right.

10.3.2 Block Measuring

All blocks are immediately measured when they are placed. This makes it possible for instance to
underline a title exactly. After a block has been placed, its width is available as \BlockWidth.

Example 10.3

\def\rulespecs{height 1pt width \BlockWidth\relax}

\DefineHeading:TestHeading Style:bold

line:start block:start TestHeadingCounter . Spaces:2 stickout:left

block:start title block:stop line:stop

vwhite:2pt hrule rulespecs vwhite:10pt Stop

\TestHeading The Title Is Underlined

The text follows.

1. The Title Is Underlined

The text follows.

Observe how a control sequence \rulespecs is used to sneak the height and width of the rule
into the definition. This is necessary because control sequences are not allowed in a construct
definition.28

Chunks of text 10.3

10.3.3 The line option

The option line is used to create a single strip of text that fits exactly in between the margins
of the page. Most of the time, titles will be in a line.

Example 10.4

\DefineHeading:TestHeading

line:start block:start TestHeadingCounter Spaces:1.5 stickout:left

title line:stop Stop

\TestHeading A Title

1 A Title

Another example was above. Here is another use of a line:

Example 10.5

\DefineHeading:TestHeading

line:start TestHeadingCounter fillup title line:stop Stop

\TestHeading The title

1 The title

10.3.4 The textcolumn option

In the examples above all titles fit on one line comfortably. If this is not the case, the title can be
put in a textcolumn which can span several lines.

Example 10.6

\DefineHeading:TestHeading

line:start block:start TestHeadingCounter Spaces:2 block:stop

textcolumn:topline title textcolumn:stop

line:stop Stop

\TestHeading A very very very very very very very very very very very

very very very very very very very very very very very very very

very very very very very very very very long title

1 A very very very very very very very very very very very very very very very very very very
very very very very very very very very very very very very very very long title

This option is mostly interesting in combination with others such as block and line. As is
apparent from the above example: a block placed in the same line as a text column will detract
from the latter’s width.

(In fact it is the other way around: Lollipop sets the line with a text column of width
zero to determine the remaining space. Then the line is set again. This may give problems if you
manipulate parameters inside the line, because the line is in effect typeset twice. Also make sure
not to have other \vbox-es in the line than the text column.)

10.3.5 Traps

It is a bad idea to have material in headings and such that is not inside a block, textcolumn, or
line. For instance: 29

10 Options

Example 10.7

\DefineHeading:TestHeading

block:start TestHeadingCounter Spaces:2 block:stop

title Stop

\TestHeading Where does the title go?

1
Where does the title go?

10.4 Labels

References to any counter will always be correct, no matter if that counter has changed after
retypesetting the document, if symbolic references are used. Referencing is explained in detail in
chapter 8.

The way a symbolic reference is formatted can be altered from the default (just give the
counter) by using the label option.
\DefineHeading:TestSection

line:start Style:italic TestSectionCounter Spaces:2 title line:stop

label:start (TestSectionCounter) label:stop Stop

See further section 8.2.

10.5 Break before / after

The options breakbefore and breakafter control how eager TEX will be to break the page
before or after a construct. These options take one value, a so-called ‘penalty’ value, meaning that
the higher the value you specify, the higher the penalty is, and therefore the less likely it is that
the page will be broken there.

Numerical values are typically in the tens or hundreds; any value of 10 000 or more
means that there will never be a break at that point; a value of -10 000 or less means a guaranteed
break. If you don’t want to remember these rules, values of yes and no mean a guaranteed break,
and no break respectively.

A further exceptional value is breakbefore/after:0, this will cause no penalty to be placed.
The reason for this is highly TEXnical.

10.6 Indentation

The option indentafter controls the behaviour of the first paragraph after a generic construct.,
indentinside, indentfirst.

10.7 Rules

There is an option hrule. You should not write
\def\rulemacro{\hrule height [...] }

\DefineHeading [...] rulemacro [...] Stop

because then Lollipop cannot prevent page breaks around the rule. Instead write
\def\rulespecs{ height [...] }30

Obscure options 10.9

\DefineHeading [...] hrule rulespecs [...] Stop

so that the option hrule is used. See section 10.3.2 for an example.

10.8 Embedded constructs

Most generic constructs will be vertically separated from the surrounding text. However, in rare
cases (and for unusual applications) it be desired to have a construct that is part of a paragraph.
For this the option embedded exists.

This option has the following values.

embedded:no

This is the default.

embedded:left

The construct continues an already started paragraph, but after the construct a vertical break
follows.

embedded:right

After the construct a paragraph can continue, but the construct is separated vertically from
preceding text.

embedded:yes

The construct is both left and right embedded.
Embedding a construct has an interesting application to generating indexes. (See

chapter 9 for general information about external files.) This can be done by having embedded
headings that write their title to the index file.

Example 10.8

\DefineExternalFile:tIndex=tix

\DefineHeading:NewWord embedded:yes

block:start Style:bold title block:stop

external:tIndex title external:stop Stop

\def\introword#1{\NewWord #1\par}

In this sentence two \introword{flubrious} words are

\introword{stinselsed}.

In this sentence two flubrious words are stinselsed.

Cute, ain’t it?
A word of warning though. Headings and such generate TEX ‘marks’ which take up main

memory. You only need these if you are going to be referring to that object with \LastPlaced or
such; see section 7.6. Embedded headings used as above usually don’t need these marks, so you
can prevent TEX overflow by putting the option nomarks in their definition.

10.9 Obscure options

10.9.1 Arguments

In case you want to interface to other macro packages, you may want to let a construct generate
a call to the other package. For this, the Lollipop macro should be able to produce sequences
such as \begin{itemize}. The problem here is the braces. The option \arg produces a braced
expression.

For instance

\DefineTextBlock:LaTeXlist begin arg:{itemize} text

end arg:{itemize} Stop 31

10 Options

makes it possible to use call LATEX macros from Lollipop.

10.9.2 Implicit closing

The control sequence \> closes the current group, and \>] closes all currently open groups.
Every once in a while this is too drastic. Hence there is an option noimplicitclose that can be
used to prevent a construct from being closed implicitly. Using \>] inside such a construct will
close all enclosed constructs.

See the definition of \EExample in this manual for an example.

10.10 Testing

There is an option test.

32

Counters 11.1

Chapter 11

Commands

11.1 Counters

Counters can be declared explicitly by the user, but more often they are defined automatically in
some generic construct:

The \Foo defined by

\DefineBar:Foo ...

counter:i ...

Stop

will have a counter that counts in roman lowercase, and which is accessible as \FooCounter.
Everytime \Foo is used, this counter is increased by one.

The use of the counter option is described in 10.2. Here are the commands for explicit
manipulation of counters.

11.1.1 Allocation and representation

A counter is created by for instance

\NewCounter:Things

This will create control sequence \ThingsCounter that will print the value of the counter. The
counter will usually be printed as an Arabic numeral, but other counter representations can be
specified by \CounterRepresentation. Here are their codes:

1 numeric

a lowercase character

A uppercase character

i lowercase roman

I lowercase roman

for instance

\CounterRepresentation:Things=i

will cause \ThingsCounter to print a lowercase Roman numeral.
However, a call such as

\CounterRepresentation:Theorem=Lemma

will make the \TheoremCounter a synonym of an earlier created \LemmaCounter

11.1.2 Counter manipulation

The following commands can be used to manipulate counters, both when they are created by
hand using \NewCounter and when they were generated automatically in some generic construct:

With \StartCounter reset the counter to one:

\StartCounter:things

With \StepCounter increase the counter by one:

\StepCounter:things

With \BackStepCounter decrease the counter by one:

\BackStepCounter:things

With \SetCounter set the counter to some specified value:

\SetCounter:things=5 33

11 Commands

With \AddToCounter increase the counter by some specified value:

\AddToCounter:things=7

The last two commands accept names of numerical parameters, for instance the value of a counter:

\NewCounter:Favourite

\AddToCounter:things=FavouriteValue

More about this ‘value’ thing in the next section.

11.1.3 What do you get when you define a counter?

After you define a counter as

\NewCounter:MyThings

there are two commands that it is important to distinguish between. First of all,
\MyThingsCounter gives the printed value of the counter. This is the command that you will
use mostly. It uses whatever representation you have specified for the counter, or plain Arabic
numerals if haven’t specified anything.

Secondly, \MyThingsValue gives the value of the counter. You can not use this command
on its own: you will get a ‘number expected’ error.

11.1.4 Counter hierarchies

Often counters are related to each other. For instance, when a new section begins, the subsection
counter has to be reset. The same may be true for equation counters. In Lollipop such a relation
is indicated by a call to \GoverningCounter, for instance

\GoverningCounter:SubSection=Section

All of the counter manipulation commands applied to a governing counter will cause all governed
counters to be reset. Such a reset also occurs if the counter was created in some generic construct.

For examples, see section 4.1.

11.1.5 Referencing counters

All counters that are declared as part of a generic construct, or explicitly through
\NewCounter automatically become the current reference when they are altered. Thus
\label[bar] will make \ref[bar] refer to the value of the counter most recently changed.
The way the counter is referenced can be altered by the label option in generic constructs; see
section 10.4.

For generic constructs with a counter no explicit \label commands need to be given;
such commands take an optional argument with the label key:

\Section[sec:examples] Examples

11.1.6 Adaptive counters

It may happen that you want to compute a value during one run of TEX, and use it in the next.
An example is the fact that this manual states the total number of pages on the title page. For
this you can use \AdaptiveCounter

\AdaptiveCounter:LastPage

which is like \NewCounter, except that the value of this counter gets written to the .aux file.
There are two ways of setting an adaptive counter: you can simply use it in some

construct (for instance through a counter synonym; section ref[sec:counter:repr]), or you can set
it explicitly, for instance as

\SetCounter:LastPage=PageValue

See how this manual does it.34

Font selection 11.2

11.1.7 Examples of counter usage

Items start at the value of one, so if a starting value of zero is necessary, the following will work
\Enumerate \SetCounter:item=-1

\item ...

11.2 Font selection

In Lollipop, choosing a font is done through three parameters:

Typeface A collection of related styles and sizes. The typeface is set by the command
\Typeface.

Style Italic, bold, roman, typewriter. You know. The style is set by the command \Style.

PointSize The size of a font in typographical points (72.27 per inch). The pointsize is set by the
command \PointSize.

The most common change of font is a change in style. Therefore, issuing a command such as
\Style:bold

immediately changes the font to the bold of the current typeface in the current pointsize.
However, issuing a command such as

\Typeface:GoudyOldStyle

or
\PointSize:28

will not change the font, since such changes are usually accompanied by a change in style. In case
that an immediate switch is necessary, the command \SetFont can be given. This evaluates the
current value of the typeface, style, and pointsize commands, and sets the font accordingly.

A number of typeface names have been predefined in Lollipop, however, in order to
print them your printer (software) must have them available.

Example 11.1

\SerifFace \PointSize:12

\Style:roman This \Style:italic sentence \PointSize:10 has

\SetFont way \SansFace \Style:roman too \SetFont many

\PointSize:12 \SetFont font \Style:bold changes.

This sentence has way too many font changes.

(The commands \SerifFace and \SansFace are defined in the master file of this manual, and
serve to make this manual formattable on any system.)

11.2.1 Relative size changes

Apart from setting the pointsize explicitly, it is also possibly to make size changes relative to
the current size. For instance, \PointSizeLarger and \PointSizeSmaller with an optional
argument indicating the size of the change can be used. These commands are not cumulative.

Example 11.2

\SerifFace

\PointSize:9 \SetFont Every once in a while,\SaveFont

\PointSizeLarger[2] shouting \PointSizeLarger helps.

\PointSizeSmaller[2]But most of the times it doesn’t.

\RestoreFont Unfortunately.

35

11 Commands

Every once in a while, shouting helps. But most of the times it doesn’t. Unfortunately.

Similar to the changes in mathematics mode to script and scriptscript size, the same relative
changes are available in text mode through the control sequences \script and \scriptscript.
The control sequence \normal can be used to restore the default size.

Here is one application of such relative changes:

L\kern -.3em\raise .35ex\hbox {\script A}\kern -.1em\TeX

which gives definition of the LATEX logo that is independent of typeface, size and style.
The relative sizes of script and scriptscript fonts are by default at 70% and 50%, but

they can be set explicitly by

\PointSizeScriptSizes:10=10,7,5

This also gives the possibility to have the \normal size to be different from the surrounding
pointsize.

11.2.2 Typeface definition

Defining a typeface means telling Lollipop how the external font name, that is, the name of the
tfm file, is to be constructed from the internal parameters. The command \DefineTypeface takes
four parameters and an optional fifth. The parameters are in sequence

1 The internal name of the typeface: the name that is given to the \Typeface command.
2 The root of the external file name. It is assumed that all font names of different styles

and sizes are constructed by appending characters to this base.
3 Suffixes corresponding to the styles that are available.
4 Suffixes corresponding to the sizes that are available.

Here is the definition of the Computer Modern typeface:

\DefineTypeface{ComputerModern}{cm}

{roman:r; slant:sl; italic:ti; mitalic:mi; bold:bx; typewriter:tt;

default:r;}

{<6:5; <7:6; <8:7; <9:8; <10:9; <11:10;

<12:10 \scaled\magstephalf;

<14:10 \scaled\magstep1; <16:10 \scaled\magstep2;

<20:10 \scaled\magstep3; >19:10 \scaled\magstep4;

default:10;}

Actually, not all combinations of styles and sizes are available. That’s where the optional
argument comes in. This argument can be used to specify with TEX conditionals exceptional
style/size combinations. Here some trickery is needed: internally the size is stored in \Fsize, and
in order to use this parameter we need to make the at-sign a letter temporarily.

\makeatletter

\DefineTypeface{Compu ...

...

default:10;}

[\ifStyle:italic \ifnum\Fsize<7 ti7\fi\fi

\ifStyle:typewriter \ifnum\Fsize<8 tt8\fi\fi]

You may have noticed that this scheme is not all-powerful. Thus I found it easier to move all
Computer Modern sans serif fonts into a new typeface: ComputerSans.

For other typefaces specifying the size suffix may be much easier than for Computer
Modern. For instance, here is the definition of the PostScript Helvetica typeface.

\makeatletter

\DefineTypeface{psHelvetica}{helv}

{roman:; italic:i; mitalic:i; bold:b; default:;}

{default: at \Fsize pt;}

\makeatother36

Indentation Control 11.4

11.2.3 Math fonts

Switching styles in math mode should be possible:

xyz

11.2.4 Other font matters

The combination \SaveFont with a subsequent \RestoreFont can be used to save and restore
the current font.

An abbreviation for a font can be defined by
\DefineFont:name=face,size,style

This has the same effect as
\def\name{\TypeFace:face \PointSize:size \Style:style }

but it takes considerable less processing inside TEX.
Even if you don’t use Computer Modern as your main typeface, the typewriter style is

not bad, so a control sequence
\def\tt{\Typeface:ComputerModern \Style:typewriter }

has been given that makes \tt always refer to the cmtt fonts. You’re at liberty to change this, of
course.

11.3 Baselineskip

Corresponding to a font size usually the baseline skip has to change. By default a fixed ratio
of 1.2 for this is taken, for instance using a 12 point baseline skip for 10 point fonts. Changing the
ratio can be done by
\BaselineSkipPointSizeRatio:1.3

If only for some specific size the baseline skip has to deviate from the default ratio, then this can
be set by
\SetPointSizeBaselineSkip:9=12

11.4 Indentation Control

11.4.1 To indent or not to indent

In most documents there is a general rule that all paragraphs indent unless a certain condition,
or that they do not indent unless certain special conditions hold. For Lollipop documents this is
determined by the command \AlwaysIndent, with values yes/no.

To override this default setting a command \Indent (with values yes/no) exists, but
that is mostly useful as an option in generic constructs, and even there it will not be used much.
See section 10.6 for options relating to indentation.

Important: never set \parindent to zero. Preventing indentation globally should be
done through \AlwaysIndent:no.

11.4.2 Basic indent

There is a quantity \basicindent that is used on the first indentation level (see the next section
for an explanation of these levels). At the start of a document it is set to the then current value
of \parindent. You can override that by \BasicIndentIsSet: give
\BasicIndentIsSet:no

before the \Start command.
This way, setting \parindent in the style definition controls the indentation in the

whole document. 37

11 Commands

11.4.3 Indentation levels; indentation size

When Lollipop decides that text should be indented, it refers to a list of indentations for the
exact amount. This list contains indentation amounts for each ‘level’ of indentation: initially the
level is one, and if you nest constructs that indent (for instance using a list inside a list) the level
goes up one step per nested construct.

By default the indentation on different levels is a fraction of the \basicindent. Thus
you can regulate the indentation on all levels simultaneously by resetting the \basicindent.

Example 11.3

\Distance:basicindent=15pt

\DefineList:TestList item:left itemCounter item:stop Stop

\TestList\item Level one \TestList\item Level two

\TestList\item Level three\>]

\Distance:basicindent=25pt

\TestList\item Level one \TestList\item Level two

\TestList\item Level three\>]

1 Level one

A Level two

I Level three

1 Level one

A Level two

I Level three

The amount of indentation on a certain level can be set explicitly with \LevelIndent.

Example 11.4

\Distance:basicindent=15pt

\LevelIndent:2=20pt

\DefineList:TestList item:left itemCounter item:stop Stop

\TestList\item Level one \TestList\item Level two

\TestList\item Level three\>]

1 Level one

A Level two

I Level three

In fact, sometimes you may want to know the name of the indentation on a certain level. This is
a control sequence such as \levelindentii for the second level. You get the idea.

11.4.4 Manipulating the indentation level

Every once in a while it can be useful to move to a next indentation level, or to return to a
previous level. For this the two commands \PushIndentLevel and \PopIndentLevel are
available. One application is for ‘interrupted lists’:38

Distances 11.7

Example 11.5

\Itemize\item One

{\par\PopIndentLevel Interrupted text!\par}

\item Two\>

• One
Interrupted text!

• Two

See chapter 9 for examples of the use of \PushIndentLevel

11.5 Margins

By default, Lollipop tries to keep straight margins. You can change its mind about that by
\FlushRight and \FlushLeft which are tests:
\FlushRight:no \FlushLeft:no

If the margins are not flush, the stretchable white space used is \rightmarginstretch and
\leftmarginstretch, which can be set by \Distance.

You have to set the amount of stretch before specifying that the margins will not be
flush. The \FlushRight/Left commands take the current value whenever they are called.

11.6 White Space

White space can be indicated by \hwhite and \vwhite. They are often useful in style definitions.
Use:
\vwhite:15pt

or
\hwhite:{15pt minus 3pt}

for stretch and shrink. The command \white is independent of the mode, and it expands to
\hwhite or \vwhite depending on the prevailing mode of TEX.

The command \fillup is mostly useful in style definitions: it tries to fill up as much
white space as is possible. For instance

line:start litteral:foo fillup litteral:bar line:stop

will push foo and bar as far apart as is possibly within the margins.

11.7 Distances

The command \Distance can be used to declare a name for a certain distance, or in more
correct TEXnical lingo, for a certain piece of glue. For instance, declaring that
\Distance:oneline=15pt

means that you can specify in some constructs
\DefineFoo:Bar whitebefore:oneline whiteafter:oneline

If you change your mind later about the value of oneline you only need to change one line in the
style definition.

Since the second parameter of \Distance is bounded by a space (or the line end,
whatever comes first), you can specify stretchable distances by enclosing plus and minus parts in
braces:
\Distance:oneline={15pt plus 2pt minus 3pt} 39

11 Commands

The effect of \Distance is global. Let me know if you don’t like it.

11.7.1 Distance synonyms

Another use of \Distance is to define one distance as a synonym of another. This may come in
handy if you use some basic distance, such as oneline for several purposes. Example: if you
specify

\Distance:whitebefore=oneline

than the whitespace before a construct will be taken to be oneline if you don’t use the
whitebefore option explicitly.

11.7.2 Adaptive distances

Suppose you want to declare a section heading as

\DefineHeading:Section ...

block:start [...] fillupto:widelabel title

where \widelabel is the width of the widest label that occurs in your document. This requires
just a tad of TEX programming. Just copy the details from the example below, which is the
definition of \Section in this manual.

By declaring something a \AdaptiveDistance instead of just \Distance its value gets
written to the .aux file at the end of the run, and restored in the next run. The second argument
is simply the default value, in case you don’t have an auxiliary file yet.

\AdaptiveDistance:WidestLabel=15pt

\def\MeasureLabel{\ifdim\BlockWidth>\WidestLabel

\global\WidestLabel\BlockWidth\fi}

\DefineHeading:Section

whitebefore:{20pt plus 2pt} whiteafter:14pt

line:start PointSize:14 Style:italic

block:start block:start ChapterCounter . SectionCounter

Spaces:1 block:stop MeasureLabel

fillupto:WidestLabel

title line:stop

external:contents title external:stop

label:start ChapterCounter . SectionCounter label:stop

Stop

Note how two nested blocks are used: the first is to measure the label, and the width is written to
the adaptive distance by means of a small macro; the second block is to fill out the white space.

If you want the paragraph indentation to depend on this adaptive width, you can give

\StartCommand{\Distance:parindent=WidestLabel }

to set \parindent at the start of the document. See section 3.1 and 11.4.2.

11.8 Input Files

Parts of a document can be loaded by

\InputFile:parta

\InputFile:partb

et cetera. A document part loaded by \InputFile always starts on a new page. In section 8.3 it
was already explained how local references for such files can be created.

Perhaps most importantly, loading files this way provides a form of error checking;
Lollipop checks at the end of such a file whether all used constructs are balanced properly.40

Goodies 11.10

11.9 Tests

Users can define tests:
\DefineTest:SomethingTheMatter

which are set like any other test:
\SomethingTheMatter:yes

or
\SomethingTheMatter:no

Tests can be used as
\ifSomethingTheMatter ... \else ... \fi

Like any other conditional, test can be used inside constructs.
\DefineFoo:Bar [...]

ifSomethingTheMatter [...] fi

[...] Stop

11.10 Goodies

11.10.1 List commands

Lollipop does a lot of list processing internally, and a few of the commands have been made
available to the user.

\NewList creates a list, and sets it to empty:
\NewList:mylist

\EmptyList just empty a list.

\TheList inserts the list. This will typeset the contents of it.
\TheList:mylist

\AppendToList adds data to a list.
\AppendToList:mylist={my data}

The data are terminated by a space or line end, hence the braces.

11.10.2 Programming Tools

A few commands are useful for the Lollipop style designer who wants to write more sophisticated
macros (see for instance the address book macros in the last chapter).

\UndefinedCS is a test on control sequences.
\if\UndefinedCS{testcs} ... \else ... \fi

\EqualString tests equality of strings.
\if\EqualString{one}{two} ... \else ... \fi

\EqualStringX tests equality of strings, using only expansion.
\if\EqualStringX{one}{two} ... \else ... \fi

\StringBefore tests lexicographic ordering of strings. The string are not supposed to contain
characters with char codes 0, 127, 255.
\if\StringBefore{one}{two} ... \else ... \fi

\NextChar chooses between two actions, based on the next character.
\if\NextChar[{\macro}{\macro[default]} ...

\IsEmptyList can test whether an argument is empty.
\if\IsEmptyList{#1} ... 41

11 Commands

is true for calls such as \macro{}.

\loop can be used for repeated execution of statements. (Users of plaing TEX may recognize
this macro; it is slightly extended here to include the \else case.) It is used as:
\loop ... \if ... \repeat

of
\loop ... \if ... \else ... \repeat

11.10.3 \everypar

The TEX primitive \everypar should not be used any more. Instead use the command
\EveryParagraph as if you are setting a token list:
\EveryParagraph{ ... }

11.10.4 \everymath

The TEX primitive \everymath should not be used any more. Instead use the command
\EveryMath as if you are setting a token list:
\EveryMath{ ... }

11.10.5 \everydisplay

The TEX primitive \everydisplay should not be used any more. Instead use the command
\EveryDisplay as if you are setting a token list:
\EveryDisplay{ ... }

11.10.6 Allocation

The commands \SaveAlloc and subsequent \RestoreAlloc save and reset the internal TEX
allocation counters.

42

Do you really want to see this? 12.1

Chapter 12

Tracing

12.1 Do you really want to see this?

You can get glimpses of Lollipop’s internal workings by enabling some of the internal traces. The
extreme positions

\Trace:yes

and
\Trace:no

cause all trace information and no trace at all respectively to be generated. You may find this
trace interesting, or it may dumbfound you. Of course, if your name is Victor you find it pretty
useful.

The following traces are available:
\NewTrace:def % definition of user constructs

\NewTrace:ref % cross references

\NewTrace:ext % external files

\NewTrace:doc % document structure

\NewTrace:font % font loading

\NewTrace:out % output routine

\NewTrace:indent % indentation control

\NewTrace:gen % general tools

43

13 Example styles

Chapter 13

Example styles

To show you the strength of Lollipop, this chapter collects a few example style definitions. The
first one is that of this manual.

13.1 The style definition for this book

In case you were wondering how this book was typeset, here is the full style definition. By the
standards of what Lollipop can do it is pretty pedestrian.

One thing that may have provide intellectual titilation is the definition of \Example and
\OutExample. It allowed me to keep the examples in sync with their output.

Of course that doesn’t really rely on Lollipop. It does illustrate the fact that Lollipop is
interfaceable to arbitrary macros. (But don’t try loading Lollipop on top of LATEX! On second
thought, do. It disables most of LATEX. Just kidding.)
% mandefs.tex style definition for the Lollipop manual

% copyright 1992/3 Victor Eijkhout

% copyright 2014 Vafa Khalighi

%

%

% This program is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see <http://www.gnu.org/licenses/>.

%

%

\def\con#1{{\tt#1}}

\def\n#1{{\tt#1}}

\def\file#1{{\tt#1}}

\def\Lollipop{Lollipop}

\Distance:rightmarginstretch={0cm plus 2.54cm}

\Distance:whitebefore={6pt plus 3pt minus 2pt}

\Distance:whiteafter=whitebefore

\FlushRight:no

\DefineExternalFile:contents=toc

\DefineHeading:Chapter

breakbefore:yes whiteafter:20pt

line:start PointSize:14 Style:bold literal:Chapter

Spaces:1 ChapterCounter line:stop

vwhite:15pt

line:start PointSize:16 Style:bold title line:stop

external:contents title external:stop

Stop

\AdaptiveDistance:WidestLabel=15pt

\def\MeasureLabel{\ifdim\BlockWidth>\WidestLabel44

The style definition for this book 13.1

\global\WidestLabel\BlockWidth\fi}

\StartCommand{\Distance:parindent=WidestLabel }

\DefineHeading:Section

whitebefore:{20pt plus 2pt} whiteafter:14pt

line:start PointSize:14 Style:italic

block:start block:start ChapterCounter . SectionCounter

Spaces:1 block:stop MeasureLabel

fillupto:WidestLabel

title line:stop

external:contents title external:stop

label:start ChapterCounter . SectionCounter label:stop

Stop

\GoverningCounter:Section=Chapter

\DefineHeading:SubSection

whitebefore:{14pt plus 2pt} whiteafter:8pt

line:start PointSize:10 Style:italic

ChapterCounter . SectionCounter . SubSectionCounter

Spaces:1 title line:stop

label:start ChapterCounter . Spaces:.2 SectionCounter

. Spaces:.2 SubSectionCounter label:stop

Stop

\GoverningCounter:SubSection=Section

\DefineExternalFile:impnotes=imp

\DefineHeading:iSection

whitebefore:{10pt plus 1pt} whiteafter:8pt

line:start PointSize:12 Style:bold I -

Style:italic iSectionCounter

Spaces:1 title line:stop

label:start I - iSectionCounter label:stop

external:impnotes title external:stop

Stop

%\GoverningCounter:iSection=Chapter

\DefineExternalItem:iSection file:impnotes PushIndentLevel

item:left I - Style:italic iSectionLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

\DefineExternalItem:Chapter file:contents

item:left ChapterLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

\DefineExternalItem:Section file:contents PushIndentLevel

item:left ChapterLabel . SectionLabel item:stop

title begingroup Spaces:2 Style:italic Page endgroup

Stop

\def\impnotetxt{Implementor’s Note}

\DefineTextBlock:ImpNote PushIndentLevel

whitebefore:12pt whiteafter:11pt

line:start PointSize:12 Style:italic impnotetxt line:stop

SansFace PointSize:9 SetFont text

Stop

\excludecomment{ImpNote}

\DefineTextBlock:WizNote

PushIndentLevel PointSize:9 SetFont text

Stop

\DefineList:Description

item:left description Spaces:2 item:stop whitebetween:6pt

Stop

\DefineList:cDescription

item:left tt char busje description Spaces:2 item:stop 45

13 Example styles

whitebetween:6pt

Stop

\DefineList:Enumerate

item:left itemCounter item:stop

Stop

\DefineList:Itemize

item:left itemsign item:stop

Stop

\DefineBBL

item:left [- itemCounter -] item:stop

Stop

\SerifFace \SetFont

\newwrite\exfile

\def\HereAndOut#1{\immediate\write\exfile{#1}}

\specialcomment{Example}

{\EExample

\immediate\openout\exfile=example.tex\relax

\let\ThisComment\HereAndOut}

{\immediate\closeout\exfile

\begingroup \tt \SetFont

\verbatimfile{example.tex}\endgroup

\SaveAlloc \input example.tex\relax \RestoreAlloc

\EExampleStop}

\DefineTextBlock:EExample whiteafter:{6pt plus 5pt}

noimplicitclose rule:h vwhite:3pt

line:start literal:Example Spaces:1.5

ChapterCounter . EExampleCounter

line:stop

vwhite:3pt rule:h vwhite:3pt text vwhite:3pt rule:h

Stop

\GoverningCounter:EExample=Chapter

\specialcomment{OutExample}

{\EExample

\immediate\openout\exfile=example.tex\relax

\let\ThisComment\HereAndOut}

{\immediate\closeout\exfile

\begingroup \tt \SetFont

\verbatimfile{example.tex}\endgroup

\par\penalty0\relax

\SaveAlloc \SuspendOutput \begingroup \CountSheetsno

\global\setbox\PageRow\hbox{}%

\let\CurrentShipout\ToPageRow

\xInputFile:example

\endgroup

\ResumeOutput \RestoreAlloc

\noindent\unhbox\PageRow\hbox{}\par

\EExampleStop}

\newbox\PageRow\newbox\RowPage

\def\ToPageRow{\setbox\RowPage\box\WholePage \xToPageRow}

\def\xToPageRow{\global\setbox\PageRow

\hbox{\unhbox\PageRow\box\RowPage\hfill}}

\def\opt#1{{\tt#1}}

\DefineExternalFile:optindex=oix

\def\refopt#1{\OptToIdx #1\par}

\DefineHeading:OptToIdx embedded:yes

block:start tt title block:stop

external:optindex title external:stop

nomarks Stop

\DefineExternalItem:OptToIdx file:optindex46

Address book 13.2

embedded:yes

begingroup tt title endgroup

nobreak Spaces:1.5 Page Spaces:2.5 Stop

\DefineExternalFile:csindex=cix

\def\refcs#1{\CsToIdx #1\par}

\DefineHeading:CsToIdx embedded:yes

block:start tt char busje title block:stop

external:csindex title external:stop

nomarks Stop

\DefineExternalItem:CsToIdx file:csindex

embedded:yes

begingroup tt char busje title endgroup

nobreak Spaces:1.5 Page Spaces:2.5 Stop

\topskip20pt

\OptionsMacro:PageDims=width:page=15cm height:page=23cm Stop

\DefinePageGrid:LeftPage macro:PageDims

band:start block:start PointSize:9 Style:italic

FirstPlaced:ChapterCounter Spaces:2 stickout:left

FirstPlaced:ChapterTitle band:stop

textband:start text textband:stop

band:invisible block:start PointSize:9 Style:bold

PageCounter Spaces:2 stickout:left band:stop

NextPageGrid:RightPage Stop

\DefinePageGrid:RightPage macro:PageDims

band:start fillup PointSize:9 Style:italic

LastPlaced:SectionTitle

block:start Spaces:2 LastPlaced:ChapterCounter .

LastPlaced:SectionCounter stickout:right

band:stop

textband:start text textband:stop

band:invisible fillup

block:start PointSize:9 Style:bold Spaces:2

PageCounter stickout:right band:stop

NextPageGrid:LeftPage Stop

\DefinePageGrid:EmptyPage macro:PageDims

textband:start text textband:stop

NextPageGrid:LeftPage Stop

\AdaptiveCounter:LastInPage \CounterRepresentation:LastInPage=i

\AdaptiveCounter:LastRegPage \CounterRepresentation:LastRegPage=1

%\SetCounter:LastInPage=PageValue -- at the end of prelim.tex

%\SetCounter:LastRegPage=PageValue -- at the end of manual.tex

\endinput

% 92/11/05 stretch added

% 92/11/18 adaptive label width

% 92/11/19 adaptive last page

13.2 Address book

The following macros generate an address book. Several noteworthy features:

• Most titles are short, that is, delimited by the line end.
• Since a page will now have several dozens of headings, the number of marks placed will

become a problem, therefore the option nomarks is included everywhere. Without this
you would easily have memory overflows.

• The \At heading writes its information to an external file. This is then parsed by the
macro \CompNam. A slight amount of knowledge of Lollipop internals is used here for 47

13 Example styles

parameter parsing, but not more than can be gleaned from simply looking at the
external file.

Then a token list is created for each company, and these lists are printed somewhere
down the file. This is a bit of TEX programming that is not quite elementary, but still
Lollipopsaves you a lot of work.

If you want to see the output, run TEX with Lollipop twice on the address.tex file.
% address book macros

% copyright 1993 Victor Eijkhout

% copyright 2014 Vafa Khalighi

%

%

% This program is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see <http://www.gnu.org/licenses/>.

%

%

% These macros are based on the Lollipop macro package,

% copyright 1992/3 Victor Eijkhout

% copyright 2014 Vafa Khalighi

%

% Format this file twice to get external files right.

%

% Some general options.

% Please use another typeface if you have it!

%

\Distance:whitebefore=0pt \Distance:whiteafter=0pt

\AlwaysIndent:no \FlushRight:no

%\TypeFace:macHelvetica \PointSize:7 \Style:roman

\TypeFace:ComputerSans \PointSize:8 \Style:roman

\def\\{,\Spaces:1 }

% The page is four columns, no footers etc

%

\DefinePageGrid:ThePage width:page=6.5in height:page=5in

textband:start text white:10pt text white:10pt

text white:10pt text textband:stop Stop

% The main macro is the text block \Entity, representing one item

% in the address book.

%

\DefineTextBlock:Entity HasTitle:short

whitebefore:{6pt plus 6pt minus 3pt} whiteafter:whitebefore

line:start rule:v={height 7pt width7pt depth0pt} Spaces:2

Style:italic title line:stop Stop

% Data in an entity is formatted as a number of headings.

% We declare all headings to be embedded, ie, they form a paragraph.

% The ’nomarks’ option is to prevent memory overflow.

%

\OptionsMacro:embed=embedded:yes nomarks

whitebefore:0pt whiteafter:0pt Stop

\DefineHeading:phone HasTitle:short macro:embed

literal:phone : Spaces:1.5 title , Spaces:2 Stop

\DefineHeading:fax HasTitle:short macro:embed48

Address book 13.2

literal:fax : Spaces:1.5 title , Spaces:2 Stop

\DefineHeading:Address HasTitle:short macro:embed

title , Spaces:2 Stop

\DefineHeading:Note HasTitle:short macro:embed

(title) Spaces:2 Stop

% Here’s an example of non-standard handling of the title:

% email addresses are set in \tt, and can be broken differently

%

\def\breakemail{\hyphenchar\font=‘. }

\DefineHeading:email HasTitle:short macro:embed

begingroup tt breakemail title endgroup , Spaces:2 Stop

% This is invisible information; maybe later we’ll do something

% with it.

\DefineHeading:Route HasTitle:short Stop

% Here is the first really cute application.

% If a person is declared to be \At a certain company, then

% that fact is written out to an external file, which can be loaded

% later.

%

\DefineExternalFile:companies=ats

\def\WorksAt{Works at: }

\DefineHeading:At macro:embed

HasTitle:short WorksAt title Spaces:2

external:companies title unhskip title:Entity unhskip external:stop Stop

% When the ’companies’ file gets loaded the title only gets

% parsed by the macro \CompNam, and nothing else happens.

% The title is split into company and person; #1 becomes the name

% of a list to which #2 is added.

%

\def\CompNam#1\unhskip#2\unhskip{

\if\UndefinedCS{#1}\NewList:{#1} \fi

\AppendToList:#1={#2\unhskip, } }

\DefineExternalItem:At file:companies

expandafter CompNam title Stop

% The company lists are later simply loaded; see below.

% Even more complicated: birthdays.

% All birthdays are written to an external file.

%

\DefineExternalFile:births=brt

\DefineHeading:birthday HasTitle:short macro:embed

literal:Born : title Spaces:2

external:births title unhskip title:Entity unhskip external:stop Stop

% Later every month becomes something like an entity;

% here is how we generate a token list for each month.

%

\def\month#1{\ifcase#1\or jan\or feb\or mar\or apr\or may\or jun\or

jul\or aug\or sep\or oct\or nov\or dec\fi}

\tempcounta=1 \loop\ifnum\tempcounta<13

\xp\NewList\xp:\xp{\month\tempcounta}

\advance\tempcounta1 \repeat

% Formatting the caboodle means:

% -- loading the ’births’ file

% -- formatting each month separately by \OneMonth

% which is essentially a call to the text block \Month

%

\def\AllBirths{\LoadExternalFile:births

\tempcounta=1 \loop\ifnum\tempcounta<13

\OneMonth \advance\tempcounta1 \repeat}

\def\OneMonth{\xp\Month\month\tempcounta\par

\TheList:{\month\tempcounta} \>}

% Month is much like \Entity, just a bit different visually.

% 49

13 Example styles

\DefineTextBlock:Month

whitebefore:{6pt plus 6pt minus 3pt} whiteafter:whitebefore

line:start rule:v={height 7pt width7pt depth0pt} Spaces:2

Style:italic title Spaces:2

fillup rule:v={height 7pt width7pt depth0pt} line:stop

Stop

% When the external file is loaded, every birthday is processed

% by \BirNam which splits it into #1 year #2 month #3 day and

% #4 person’s name. This is then written to the list for the

% appropriate month.

%

\def\BirNam#1 #2 #3\unhskip #4\unhskip

{\tempcounta#2\relax

\AppendToList:{\month\tempcounta}={\JollyFellow #3 #4 (#1)\par}

}

\DefineExternalItem:birthday file:births

expandafter BirNam title Stop

\DefineHeading:JollyFellow title nomarks Stop

% Phooeew! Now we can get down to business!

\WriteExtern:yes

\Start

\LoadExternalFile:companies

\Entity Adam Aardvark

\Address Page~1, English Language Dictionary

\>

\Entity Barbara Beeton

\At Tugbt

\Note Editor in chief

\>

\Entity Jane Doe

\email doe@re.mi.sol

\>

\Entity John Doe

\phone +1 212 555 4141

\>

\Entity Victor Eijkhout

\Address Department of Computer Science, University of Tennessee

\phone +1 615 974 8298

\At Tugbt

\Note merely associate editor

\email eijkhout@cs.utk.edu

\birthday 1959 11 29

\>

\Entity Elvis Presley

\birthday 1938(?) 01 08

\>

\Entity Tugboat

\TheList:Tugbt

\>

\AllBirths

\Stop

50

